Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Depth Completion with Anisotropic Metric, Convolutional Stages, and Infinity Laplacian
Indexado
WoS WOS:001245507300001
Scopus SCOPUS_ID:85195871104
DOI 10.3390/APP14114514
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Depth map estimation is crucial for a wide range of applications. Unfortunately, it often presents missing or unreliable data. The objective of depth completion is to fill in the "holes" in a depth map by propagating the depth information using guidance from other sources of information, such as color. Nowadays, classical image processing methods have been outperformed by deep learning techniques. Nevertheless, these approaches require a significantly large number of images and enormous computing power for training. This fact limits their usability and makes them not the best solution in some resource-constrained environments. Therefore, this paper investigates three simple hybrid models for depth completion. We explore a hybrid pipeline that combines a very efficient and powerful interpolator (infinity Laplacian or AMLE) and a series of convolutional stages. The contributions of this article are (i) the use a Texture+Structuredecomposition as a pre-filter stage; (ii) an objective evaluation with three different approaches using KITTI and NYU_V2 data sets; (iii) the use of an anisotropic metric as a mechanism to improve interpolation; and iv) the inclusion of an ablation test. The main conclusions of this work are that using an anisotropic metric improves model performance, and the ablation test demonstrates that the model's final stage is a critical component in the pipeline; its suppression leads to an approximate 4% increase in MSE. We also show that our model outperforms state-of-the-art alternatives with similar levels of complexity.

Revista



Revista ISSN
Applied Sciences Basel 2076-3417

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Multidisciplinary
Engineering, Multidisciplinary
Physics, Applied
Materials Science, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 LAZCANO-GONZALEZ, VANEL ANDRES - Universidad Mayor - Chile
2 Calderero, Felipe - CPTO Ladorian - España
CPTO @ Ladorian—Nuclio Digital School - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.