Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predictive Insight into Tailings Flowability at Their Disposal Using Operating Data-Driven Artificial Neural Network (ANN) Technique
Indexado
WoS WOS:001304817000001
Scopus SCOPUS_ID:85202657654
DOI 10.3390/MIN14080737
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This study investigates the application of artificial neural networks (ANNs) in predicting the flowability of mining tailings based on operational variables. As the mining industry seeks to enhance operations with complex ores, the constant improvement and optimization of mineral waste management are crucial. The flowability of tailings was investigated with data driven by properties such as particle-size distribution, water content, compaction capacity, and viscoelastic characteristics that can directly affect stacking, water recovery capabilities, and stability at disposal, influencing storage capacity, operational continuity, and work safety. There was a strong correlation between water content and tailings flowability, emphasising its importance in operational transport and deposition. Three ANN models were evaluated to predict tailings flowability across three and five categories, where a model based on thickening operational variables, including yield stress and turbidity, demonstrated the highest accuracy, achieving up to 94.4% in three categories and 88.9% in five categories. Key variables such as flocculant dosage, water content, yield stress, and solid concentration were identified as crucial for prediction accuracy The findings suggest that ANN models, even with limited datasets, can provide reliable flowability predictions, supporting tailings management and operational decision-making.

Revista



Revista ISSN
Minerals 2075-163X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mineralogy
Mining & Mineral Processing
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Herrera, Nelson Hombre Univ Oulu - Finlandia
Universidad Católica del Norte - Chile
Oulun Yliopisto - Finlandia
2 Mollehuara, Raul - Univ Oulu - Finlandia
Oulun Yliopisto - Finlandia
3 Gonzalez, Maria Sinche - Univ Oulu - Finlandia
Oulun Yliopisto - Finlandia
4 Okkonen, Jarkko - Geol Survey Finland GTK - Finlandia
Geologian Tutkimuskeskus - Finlandia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Católica del Norte
Oulun Yliopisto
Geological Survey of Finland
Oulu Mining School
Oulun Yliopiston Tukisti
Oulun Yliopiston Tukisäätiö

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded in part by the Oulun Yliopiston Tukisaatio 2022 grants, project "Deep learning application in the operation of mining waste disposal", grant number 20220105, and by the authors.
The authors sincerely and gratefully acknowledge the support and guidance provided by the Oulu Mining School from the University of Oulu (Finland), the Department of Metallurgical Engineering from the Universidad Cat\u00F3lica del Norte (Chile), the Geological Survey of Finland GTK (Finland), and the Oulun Yliopiston Tukis\u00E4\u00E4ti\u00F6, which provided the grant used in part of the research.

Muestra la fuente de financiamiento declarada en la publicación.