Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Learning-Based Resilient FCS-MPC for Power Converters Under Actuator FDI Attacks
Indexado
WoS WOS:001304358100001
Scopus SCOPUS_ID:85196505266
DOI 10.1109/TPEL.2024.3416292
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this literature, we concentrate on investigating a learning-based resilient predictive control framework using variable-step event-triggered mechanism, which aims to avoid unnecessary events and enhance the system robustness subject to actuator false data injection (FDI) attacks. To be more precise, to improve the robust performance of the controlled system under both actuator attacks and parametric uncertainties, a learning-based robust model predictive control (MPC) architecture is developed. In this control architecture, an online learning strategy is incorporated into a neural network weight update policy, which can provide a reinforced structure and accelerate the learning process. Meanwhile, in order to circumvent the unnecessary triggering and commutation behavior, a tentative verification of a triggering condition and a delayed triggering with a variable-step waiting horizon are embedded into the suggested event-triggered mechanism. The main feature of our development is that it not only enhances the control property under the actuator FDI attacks, but also attenuates the inherent issues of unnecessary switching losses and parametric uncertainties affecting the system, opening a wide research field for resilient finite control-set MPC. Finally, we highlight its advantages with a case study.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Liu, Xing - Shanghai Dianji Univ - China
State Key Lab High speed Maglev Transportat Techno - China
Zhejiang Univ - China
State Key Laboratory of High-speed Maglev Transportation Technology - China
Zhejiang University - China
Shanghai Dianji University - China
2 Qiu, Lin - Zhejiang Univ - China
UNIV ILLINOIS - China
College of Electrical Engineering, Zhejiang University - China
ZJU-UIUC Institute - China
Zhejiang University - China
3 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Univ San Sebastian Santiago - Chile
Universidad San Sebastián - Chile
4 Wang, Kui - Tsinghua Univ - China
Tsinghua University - China
5 Li, Yongdong - Zhejiang Univ - China
College of Electrical Engineering, Zhejiang University - China
Zhejiang University - China
6 Fang, Youtong - Tsinghua Univ - China
Tsinghua University - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Zhejiang Province
ANID
State Key Laboratory of High-speed Maglev Transportation Technology

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by National Key Research and Development Program of China under Grant 2022YFB4201600, in partby the State Key Laboratory of High-speed Maglev Transportation Technology under Grant SKLM-SFCF-2023-020, in part by National Natural Science Foundation of China under Grant 52293424, in part by Natural Science Foundation of Zhejiang Province under Grant LY22E070003 and Grant LZ23E070003. This work of Jose Rodriguez was supported by ANID through projects under Grant FB0008, Grant 1210208, and Grant 1221293.

Muestra la fuente de financiamiento declarada en la publicación.