Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ESWA.2024.125384 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The demand for accurate Multi-Output Spatio-temporal Forecasting is rising in areas like public safety, urban mobility, and climate variability. Traditional methods struggle with model calibration and data integration. This paper presents a methodological guideline for creating forecasting pipelines that handle multi-output forecasting complexities. Using a uniform methodology tested on three diverse datasets, the framework combines genetic algorithms and advanced models to optimize forecasting. Our evaluation shows significant performance improvements, with better adaptability to urban and rural datasets, aiding decision-making in spatio-temporal analysis. The framework achieved a 20% average improvement in the R-2 metric across all datasets, outperforming benchmark models.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Arias-Garzon, Daniel | - |
Univ Autonoma Manizales - Colombia
Universidad Autónoma de Manizales - Colombia |
| 2 | Tabares-Soto, Reinel | - |
Univ Autonoma Manizales - Colombia
Universidad Adolfo Ibáñez - Chile Univ Caldas - Colombia Universidad Autónoma de Manizales - Colombia Universidad de Caldas - Colombia |
| 3 | RUZ-HEREDIA, GONZALO ANDRES | Hombre |
Universidad Adolfo Ibáñez - Chile
Centro de Ecología Aplicada y Sustentabilidad - Chile Data Observ Fdn - Chile Data Observatory Foundation - Chile |
| Fuente |
|---|
| Anillo |
| Universidad de Caldas |
| National Agency for Research and Development (ANID) |
| ANID Fondecyt |
| ANID PIA/BASAL |
| Agencia Nacional de Investigación y Desarrollo |
| sistema general de regalías |
| Universidad Autónoma de Manizales |
| Anid/PIA/Anillo |
| ANIDFONDECYT |
| Agenția Națională pentru Cercetare și Dezvoltare |
| Prix Inspiration Arctique |
| Clasificación de los estadios del Alzheimer utilizando Imágenes de Resonancia Magnética Nuclear |
| Applied Research Subdirection (SIA) |
| Sistema General de Regalias (SGR) -Asignacibn para la Ciencia, Tecnologia e Innovacibn, project BPIN |
| Asignación para la Ciencia, Tecnología e Innovación |
| Agradecimiento |
|---|
| The authors would like to thank Universidad Autbnoma de Manizales for making this paper as part of the Clasificacibn de los etadios del Alzheimer utilizando Imagenes de Resonancia Magnetica Nuclear y datos clinicos a partir de tecnicas de Deep Learning [873-139] and Aplicacibn de Vision Transformer para clasificar estadios del Alzheimer utilizando imagenes de resonancia magnetica nuclear y datos clinicos [847-2023] . Additionally, we acknowledge the support from the projects ANID FONDECYT 1230315, ANID FONDECYT 1231245, ANID PIA/BASAL FB0002, and ANID/PIA/ANILLO ACT210096. We also extend our gratitude to Universidad de Caldas for their support, as this paper is part of the project Plataforma tecnolbgica para la clasificacibn de los estadios de la enfermedad de alzheimer utilizando imagenes de resonancia magnetica nuclear, datos clinicos y tecnicas de deep learning. [PRY-89] . We also thank the National Agency for Research and Development (ANID) ; Applied Research Subdirection (SIA) ; through the instrument IDeA I+D 2023, code ID23I10357, and ORIGEN 0011323, Sistema General de Regalias (SGR) -Asignacibn para la Ciencia, Tecnologia e Innovacibn, project BPIN 2021000100368, and PRY-121-Interactive Virtual Didactic Strategy for the Promotion of ICT Skills and their Relationship with Computational Thinking. |
| The authors would like to thank the proyect Clasificaci\u00F3n de los estadios del Alzheimer utilizando Im\u00E1genes de Resonancia Magn\u00E9tica Nuclear datos cl\u00EDnicos a partir de t\u00E9cnicas de Deep Learning [ 873-139 ] Universidad Aut\u00F3noma de Manizales, Manizales, Colombia, ANID FONDECYT 1230315 , ANID FONDECYT 1231245 , ANID PIA/BASAL FB0002 , and ANID/PIA/ANILLO ACT210096 , for financially supporting this research. |