Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/NANO14141224 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for Ti((1-x))A(x)O(2), where A stands for any of the eight following neutral substitutional impurities, Fe, Ni, Co, Pd, Pt, Cu, Ag and Au, based on the rutile structure of pristine TiO2. We use a fully unconstrained version of the density functional method with generalized gradient approximation plus the U exchange and correlation, as implemented in the Quantum Espresso free distribution. Within the limitations of a finite-size cell approximation, we report the band structure, energy gaps and absorption spectrum for all these cases. Rather than stressing precise values, we report on two general features: the location of the impurity levels and the general trends of the optical properties in the eight different systems. Our results show that all these substitutional atoms lead to the presence of electronic levels within the pristine gap, and that all of them produce absorptions in the visible and near-infrared ranges of electromagnetic radiation. Such results make these systems interesting for the fabrication of solar cells. Considering the variety of results, Ni and Ag are apparently the most promising substitutional impurities with which to achieve better performance in capturing the solar radiation on the planet's surface.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CISTERNAS-JARA, EDUARDO ENRIQUE | Hombre |
Universidad de La Frontera - Chile
|
| 2 | Aguilera-del-Toro, Rodrigo | - |
UNIV VALLADOLID - España
Universidad de Valladolid - España |
| 3 | Aguilera-Granja, F. | Hombre |
UNIV AUTONOMA SAN LUIS POTOSI - México
Donostia Int Phys Ctr DIPC - España Donostia International Physics Center - España Universidad Autonoma de San Luis Potosi - México |
| 4 | VOGEL-MATAMALA, EUGENIO EMILIO | Hombre |
Universidad de La Frontera - Chile
Universidad Central de Chile - Chile Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| Fuente |
|---|
| FONDECYT |
| CEDENNA |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| DIUFRO project |
| Centro para el Desarrollo de la Nanociencia y la Nanotecnologia |
| Freiwillige Akademische Gesellschaft |
| Conahcyt |
| CONAHCYT national laboratories |
| IPICYT Supercomputing National Center |
| Agradecimiento |
|---|
| E.C. thanks DIUFRO Project DI23-0026. Powered@NLHPC. This research was partially supported by the supercomputing infrastructure of NLHPC (ECM-02). One of us, FAG, gratefully acknowledges the computing time granted by the IPICYT Supercomputing National Center, a member of the CONAHCYT national laboratories, under project TKII-E-0424-I-090424-20/PR-22. Chileansources Fondecyt (1230055) and CEDENNA (AFB220001) are also acknowledged for partial support. |
| E.C. thanks DIUFRO Project DI23-0026. Powered@NLHPC. This research was partially supported by the supercomputing infrastructure of NLHPC (ECM-02). One of us, FAG, gratefully acknowledges the computing time granted by the IPICYT Supercomputing National Center, a member of the CONAHCYT national laboratories, under project TKII-E-0424-I-090424-20/PR-22. Chilean sources Fondecyt (1230055) and CEDENNA (AFB220001) are also acknowledged for partial support. |