Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Transformer neural networks for closed-loop adaptive optics using nonmodulated pyramid wavefront sensors
Indexado
WoS WOS:001272307300009
Scopus SCOPUS_ID:85198907263
DOI 10.1051/0004-6361/202349118
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Context. The pyramid wavefront sensor (PyWFS) provides the required sensitivity for demanding future adaptive optics (AO) instruments. However, the PyWFS is highly nonlinear and requires the use of beam modulation to successfully close an AO loop under varying atmospheric turbulence conditions. This comes at the expense of a loss in sensitivity. Aims. We trained, analyzed, and compared the use of deep neural networks (NNs) as nonlinear estimators for the nonmodulated PyWFS, identifying the most suitable NN architecture for a reliable closed-loop AO. Methods. We developed a novel training strategy for NNs that seeks to accommodate for changes in residual statistics between open and closed loops, plus the addition of noise for robustness purposes. Through simulations, we tested and compared several deep NNs from classical to new convolutional neural networks (CNNs), plus the most recent transformer neural network (TNN; global context visual transformer, GCViT), first for an open loop and then for a closed loop. By identifying and properly retraining the most adequate deep neural net, we tested its simulated performance first in an open loop and then for closing an AO loop at a variety of noise and turbulence conditions. We finally tested the trained NN ability to close a real AO loop for an optical bench. Results. Using open-loop simulated data, we observe that a TNN (GCViT) largely surpasses any CNN in estimation accuracy in a wide range of turbulence conditions. Moreover, the TNN performs better in a simulated closed loop than CNNs, avoiding estimation issues at the pupil borders. When closing the loop at strong turbulence and low noise, the TNN using nonmodulated PyWFS data is able to close the loop, similar to a PyWFS with 12 lambda/D of modulation. When the noise is increased, only the TNN is able to close the loop, while the standard linear reconstructor fails even when a modulation is introduced. Using the GCViT, we closed a real AO loop in the optical bench and achieved a Strehl ratio between 0.28 and 0.77 for turbulence conditions corresponding to Fried parameters ranging from 6 to 20 cm, respectively. Conclusions. Through a variety of simulated and experimental results, we demonstrate that a TNN is the most suitable architecture for extending the dynamic range without sacrificing sensitivity for a nonmodulated PyWFS. It opens the path for using nonmodulated Pyramid WFSs in an unprecedented range of atmospheric and noise conditions.

Revista



Revista ISSN
Astronomy & Astrophysics 0004-6361

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Weinberger, Camilo - Pontificia Universidad Católica de Valparaíso - Chile
2 Tapia, Jorge - Pontificia Universidad Católica de Valparaíso - Chile
3 Neichel, Benoit Hombre Aix Marseille Univ - Francia
Laboratoire d'Astrophysique de Marseille - Francia
4 Vera, Esteban Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)
Fondo Nacional de Desarrollo Científico y Tecnológico
European Commission
Agence Nationale de la Recherche
CNES
Centre National de la Recherche Scientifique
Fondos de Desarrollo de la Astronomía Nacional
Centre National d’Etudes Spatiales
INSU
LabEx FOCUS
Agencia Nacional de Investigacion y Desarrollo (ANID)
Agencia Nacional de Investigación y Desarrollo
Action Spécifique Haute Résolution Angulaire
WOLF
APPLY
Programme Investissement Avenir F-CELT
ORP-H2020 Framework Programme of the European Commission’s
French government under the France 2030 investment plan
French National Research Agency (ANR) WOLF
Region Sud
ANR-18-CE31-0018

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors gratefully acknowledge the financial support provided by Agencia Nacional de Investigacion y Desarrollo (ANID) ECOS200010, STIC2020004, ANILLOS ATE220022, BECA DOCTORADO NACIONAL 21231967; Fondos de Desarrollo de la Astronomia Nacional (QUIMAL220006, ALMA200008); Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) (EXPLORACION 13220234, Postdoctorado 3220561); French National Research Agency (ANR) WOLF (ANR-18-CE31-0018), APPLY (ANR-19-CE31-0011), LabEx FOCUS (ANR-11-LABX-0013); Programme Investissement Avenir F-CELT (ANR-21-ESRE-0008), Action Specifique Haute Resolution Angulaire (ASHRA) of CNRS/INSU co-funded by CNES, ORP-H2020 Framework Programme of the European Commission's (Grant number 101004719), Region Sud and the french government under the France 2030 investment plan, as part of the Initiative d'Excellence d'Aix-Marseille Universite A*MIDEX, program number AMX-22-RE-AB-151.
The authors gratefully acknowledge the financial support provided by Agencia Nacional de Investigacion y Desarrollo (ANID) ECOS200010, STIC2020004, ANILLOS ATE220022, BECA DOCTORADO NACIONAL 21231967; Fondos de Desarrollo de la Astronom\u00EDa Nacional (QUIMAL220006, ALMA200008); Fondo Nacional de Desarrollo Cient\u00ED-fico y Tecnol\u00F3gico (FONDECYT) (EXPLORACION 13220234, Postdoctorado 3220561); French National Research Agency (ANR) WOLF (ANR-18-CE31-0018), APPLY (ANR-19-CE31-0011), LabEx FOCUS (ANR-11-LABX-0013); Programme Investissement Avenir F-CELT (ANR-21-ESRE-0008), Action Sp\u00E9cifique Haute R\u00E9solution Angulaire (ASHRA) of CNRS/INSU co-funded by CNES, ORP-H2020 Framework Programme of the European Commission\u2019s (Grant number 101004719), R\u00E9gion Sud and the french government under the France 2030 investment plan, as part of the Initiative d\u2019Excellence d\u2019Aix-Marseille Universit\u00E9 A*MIDEX, program number AMX-22-RE-AB-151.

Muestra la fuente de financiamiento declarada en la publicación.