Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Development of a Machine-Learning Model for Anterior Knee Pain After Total Knee Arthroplasty With Patellar Preservation Using Radiological Variables
Indexado
WoS WOS:001408035800029
Scopus SCOPUS_ID:85187977477
DOI 10.1016/J.ARTH.2024.02.006
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Background: Anterior knee pain (AKP) following total knee arthroplasty (TKA) with patellar preservation is a common complication that significantly affects patients’ quality of life. This study aimed to develop a machine-learning model to predict the likelihood of developing AKP after TKA using radiological variables. Methods: A cohort of 131 anterior stabilized TKA cases (105 patients) without patellar resurfacing was included. Patients underwent a follow-up evaluation with a minimum 1-year follow-up. The primary outcome was AKP, and radiological measurements were used as predictor variables. There were 2 observers who made the radiological measurement, which included lower limb dysmetria, joint space, and coronal, sagittal, and axial alignment. Machine-learning models were applied to predict AKP. The best-performing model was selected based on accuracy, precision, sensitivity, specificity, and Kappa statistics. Python 3.11 with Pandas and PyCaret libraries were used for analysis. Results: A total of 35 TKA had AKP (26.7%). Patient-reported outcomes were significantly better in the patients who did not have AKP. The Gradient Boosting Classifier performed best for both observers, achieving an area under the curve of 0.9261 and 0.9164, respectively. The mechanical tibial slope was the most important variable for predicting AKP. The Shapley test indicated that high/low mechanical tibial slope, a shorter operated leg, a valgus coronal alignment, and excessive patellar tilt increased AKP risk. Conclusions: The results suggest that global alignment, including sagittal, coronal, and axial alignment, is relevant in predicting AKP after TKA. These findings provide valuable insights for optimizing TKA outcomes and reducing the incidence of AKP.

Revista



Revista ISSN
Journal Of Arthroplasty 0883-5403

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Orthopedics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barahona, Maximiliano Hombre Hospital Clínico Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile
2 Guzmán, Mauricio A. - Hospital Clínico Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile
3 Cartes, Sebastian - Clínica Las Condes - Chile
4 Arancibia, Andrés E. - Clínica Las Condes - Chile
5 Mora, Javier E. - Clínica Las Condes - Chile
6 Barahona, Macarena A. A. Mujer Hospital Clínico Universidad de Chile - Chile
Clínica Las Condes - Chile
Hosp Clin Univ Chile - Chile
7 Palma, Daniel - Hospital Clínico Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile
8 Hinzpeter, Jaime Hombre Hospital Clínico Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile
9 Infante, Carlos Hombre Hospital Clínico Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile
10 Barrientos, Cristian Hombre Hospital Clínico Universidad de Chile - Chile
Hosp Clin Univ Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Hospital Clínico Universidad de Chile
Research Support Office (OAIC) of the Hospital Clinico Universidad de Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The first and fifth authors acknowledge the continuous support of Leonel Barahona in performing clinical research.This project was supported by funds awarded in the “Free Topics for Clinical and Basic-Clinical Research 2021” competition of the Research Support Office (OAIC) of the Hospital Clinico Universidad de Chile. Funding: This project was supported by funds awarded in the “Free Topics for Clinical and Basic-Clinical Research 2021” competition of the Research Support Office (OAIC) of the Hospital Clinico Universidad de Chile.
This project was supported by funds awarded in the "Free Topics for Clinical and Basic-Clinical Research 2021" competition of the Research Support Office (OAIC) of the Hospital Clinico Universidad de Chile.

Muestra la fuente de financiamiento declarada en la publicación.