Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/CHILECON60335.2023.10418631 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Integrating social robotics into the construction industry, particularly in the context of Industry 5.0, faces several challenges in creating complex environments that seamlessly blend human and machine interactions. In this regard, the emergence of intelligent and expert systems holds promising technologies to enhance construction tasks focused on robots and workers in 3D printing applications. This work compares several methods of convolutional neural network-based object detectors designed to identify distinct construction assets and workers within the dynamic environment of 3D printing. To this end, different versions of the You Only Look Once v8 (YOLO v8) algorithm have been implemented, trained, and experimentally tested using several images captured within dynamic construction environments. Furthermore, we present an in-depth comparison between YOLO v8 and its preceding versions, namely YOLO v7 and YOLO v5. Experimental results disclosed the high performance of the proposed approach in effectively detecting three distinct entities (workers, robotic platforms, and building elements), achieving a precision rate of up to 98.8%.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Guaman-Rivera, Robert | - |
Universidad de O’Higgins - Chile
|
| 2 | Menendez, Oswaldo | - |
Universidad Católica del Norte - Chile
|
| 3 | Arevalo-Ramirez, Tito | - |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Aro, Katherine | - |
Universidad Católica del Norte - Chile
|
| 5 | Prado, Alvaro | - |
Universidad Católica del Norte - Chile
|
| 6 | Garcia-Alvarado, Rodrigo | - |
Universidad del Bío Bío - Chile
|
| 7 | Auat-Cheein, Fernando | - |
Heriot-Watt University - Reino Unido
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| ANID Fondecyt |
| Anillo de Investigaci on en Ciencia y Tecnoloǵia |
| Agradecimiento |
|---|
| This work is supported by the Institute of Engineering Sciences, Universidad de O Higgings and Advance Center of Electrical, ANID FONDECYT 1227130, Fondecyt iniciacion en investigacion 2023 grant 11230962, Anillo de Investigaci on en Ciencia y Tecnolo\u01F5ia -ACT210052, Fondef IDEA I+D 2021 Cod. ID21| 10181, and Electronic Engineering under Grant AC3E FB0008. |