Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/CHILECON60335.2023.10418750 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In datasets, the preponderance of imbalanced classes impedes accurate cyberattack categorization. While high aggregate accuracy is sought, it's paramount to adeptly classify all attack types, especially the under-represented ones. Existing methodologies, such as Ensemble techniques and the Synthetic Minority Oversampling Technique (SMOTE), address these disparities, yet the dynamic nature of underrepresented cyberattacks in cybersecurity remains a concern. To address this, we introduce a nested cascade model tailored for diverse cyberattacks within imbalanced datasets. This model leverages binary classifiers across tiers, each targeting a specific attack type. Before initializing the cascade, SMOTE is applied to counterbalance class disparities. The cascade's classification sequence employs a dual strategy: an initial one-vs-all binary classifier approach for pending classes, followed by prioritization based on model performance. We assessed our approach using the UNSW-NB15 dataset. Preliminary results indicate approximately 80% efficiency across metrics like accuracy, recall, and Fl-score. Notably, SMOTE's in- tegration yielded significant improvements for underrepresented classes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | TORRES-TORRES, ROMINA DEBORA | Mujer |
Universidad Adolfo Ibáñez - Chile
|
| 2 | Solis, Miguel A. | - |
Universidad Nacional Andrés Bello - Chile
|
| 3 | Martinez, Vicente | - |
Universidad de Valparaíso - Chile
|
| 4 | Salas, Rodrigo | Hombre |
Universidad de Valparaíso - Chile
|