Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



MA-MFIF: When misaligned multi-focus Image fusion meets deep homography estimation
Indexado
Scopus SCOPUS_ID:85193350724
DOI 10.1007/S11042-024-19385-4
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Multi-focus image fusion is a technique that combines multiple out-of-focus images to enhance the overall image quality. It has gained significant attention in recent years, thanks to the advancements in deep learning. However, one of the persistent challenges in this field is the processing of misaligned data, which can negatively impact the fusion results. To overcome this problem, a novel fusion framework with pre-registration is proposed for the fusion of misaligned multi-focus images. For pre-registration, content-aware deep homography estimation is used, which performs transfer learning on a real multi-focus image dataset to adapt to registration under defocused conditions. For fusion, a fusion module with dual-branch feature interaction is utilized to avoid invalid feature fusion and trained on real light field dataset to achieve better fusion performance. Qualitative and quantitative experimental results show that the proposed method has a 2-3 percentage point improvement in multiple evaluation metrics compared to existing advanced registration and fusion methods, and a maximum improvement of 4.83 percentage points in fusion performance when tested independently on the Lytro dataset. Additionally, We find that the value of the Qcv metric is greatly influenced by the alignment status of the input images, leading to its inability to reflect the fusion quality of aligned images.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Software Engineering
Computer Science, Theory & Methods
Computer Science, Information Systems
Engineering, Electrical & Electronic
Scopus
Computer Networks And Communications
Software
Hardware And Architecture
Media Technology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zhao, Baojun - East China University of Science and Technology - China
2 Luo, Fei - East China University of Science and Technology - China
Shanghai Key Laboratory of Computer Software Evaluating and Testing - China
3 Fuentes, Joel Hombre Universidad del Bío Bío - Chile
4 Ding, Weichao - East China University of Science and Technology - China
5 Gu, Chunhua - East China University of Science and Technology - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.