Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.HYDROMET.2024.106340 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
There are two well-defined processes for the types of copper ores. One for the processing of copper sulfides and another for the processing of the copper oxides. There are similarities between the two, particularly in the preparation stage of the run of mine (ROM) such as the crushing. However, significant differences exist in how to concentrate the elements of interest. Flotation is the most used concentration process to separate copper sulfide minerals from other minerals using air bubbles. For oxides, after the dissolution of copper, the solvent extraction (SX) process is the preferred path using two immiscible liquids to separate the copper. A line of investigation for solvent extraction is the use of a bubble coated with solvent to extract the metal of interest from the aqueous solution, some devices have been built and tested for this purpose using different principles to generate a coated bubble swarm. However, those equipments have been tested on laboratory and have not been scaled up to an industry level. The Hollow Drop (HD) concept was born from the idea of building a device to generate coated bubbles in a continuous swarm that could be scalable to an industry level. In this paper two columns were built and operated: a proof-of-concept column and a scale-up attempt for the extraction of Cu(II) fom an aqueous solution of 2.5 g L−1 using ACORGA® M5640 (25% v/v) in the Kerosene. The results show that we could generate a bubble swarm and conduct the solvent extraction process at a 97% recovery using our proposed coated bubble generator. However, in our scaled prototype test only a 70% recovery was achieved, which shows that our column is working but the scaling-up needs more investigation regarding the dimensions and flows of the process.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Poblete, Diego | Hombre |
Oulun Yliopisto - Finlandia
Universidad Católica del Norte - Chile Univ Oulu - Finlandia |
| 2 | LEIVA-HURTUBIA, CLAUDIO ANDRES | Hombre |
Oulun Yliopisto - Finlandia
Universidad Católica del Norte - Chile Univ Oulu - Finlandia |
| 3 | Sinche-Gonzalez, María | - |
Universidad Católica del Norte - Chile
|
| 4 | ACUNA-PEREZ, CLAUDIO ABRAHAM | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| INNOVA CORFO |
| Universidad Católica del Norte |
| Solvay |
| INNOVA CORFO: "Nuevo process de extraccion por solvente mediante burbujas recubiertas" |
| Agradecimiento |
|---|
| This study received external funding from INNOVA CORFO 17PIRAM-80209 : \u201CNuevo process de extracci\u00F3n por solvente mediante burbujas recubiertas\u201D. |
| This study received external funding from INNOVA CORFO 17PIRAM-80209 : \u201CNuevo process de extracci\u00F3n por solvente mediante burbujas recubiertas\u201D. |
| This study received external funding from INNOVA CORFO 17PIRAM-80209: "Nuevo process de extraccion por solvente mediante burbujas recubiertas". |