Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.3233/SW-233347 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Virtual data integration is the current approach to go for data wrangling in data-driven decision-making. In this paper, we focus on automating schema integration, which extracts a homogenised representation of the data source schemata and integrates them into a global schema to enable virtual data integration. Schema integration requires a set of well-known constructs: the data source schemata and wrappers, a global integrated schema and the mappings between them. Based on them, virtual data integration systems enable fast and on-demand data exploration via query rewriting. Unfortunately, the generation of such constructs is currently performed in a largely manual manner, hindering its feasibility in real scenarios. This becomes aggravated when dealing with heterogeneous and evolving data sources. To overcome these issues, we propose a fully-fledged semi-automatic and incremental approach grounded on knowledge graphs to generate the required schema integration constructs in four main steps: bootstrapping, schema matching, schema integration, and generation of system-specific constructs. We also present NextiaDI, a tool implementing our approach. Finally, a comprehensive evaluation is presented to scrutinize our approach.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hogan, Aidan | Hombre |
Universidad de Chile - Chile
|
| 2 | Flores, Javier | - |
Universitat Politècnica de Catalunya - España
|
| 3 | Rabbani, Kashif | - |
Aalborg University - Dinamarca
|
| 4 | Nadal, Sergi | - |
Universitat Politècnica de Catalunya - España
|
| 5 | Gómez, Cristina | - |
Universitat Politècnica de Catalunya - España
|
| 6 | Romero, Oscar | - |
Universitat Politècnica de Catalunya - España
|
| 7 | Jamin, Emmanuel | - |
NTT DATA Group Corporation - Japón
|
| 8 | Dasiopoulou, Stamatia | - |
NTT DATA Group Corporation - Japón
|
| Fuente |
|---|
| European Commission |
| Generalitat de Catalunya |
| Ministerio de Ciencia e Innovación |
| Agencia Estatal de Investigación |
| Consejo Nacional de Humanidades, Ciencias y Tecnologías |
| Spanish Ministerio de Ciencia e Innovación |
| Agradecimiento |
|---|
| This work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio de Ciencia e Innovaci\u00C3\u00B3n under project PID2020-117191RB-I00, and D3M project, funded by the Spanish Agencia Estatal de Investigaci\u00C3\u00B3n (AEI) under project PDC2021-121195-I00. Javier Flores is supported by contract 2020-DI-027 of the Industrial Doctorate Program of the Government of Catalonia and Consejo Nacional de Ciencia y Tecnolog\u00C3-a (CONACYT, Mexico). Sergi Nadal is partly supported by the Spanish Ministerio de Ciencia e Innovaci\u00C3\u00B3n, as well as the European Union \u00E2\u20AC\" NextGenerationEU, under project FJC2020-045809-I. |
| This work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio de Ciencia e Innovaci\u00F3n under project PID2020-117191RB-I00, and D3M project, funded by the Spanish Agencia Estatal de Investigaci\u00F3n (AEI) under project PDC2021-121195-I00. Javier Flores is supported by contract 2020-DI-027 of the Industrial Doctorate Program of the Government of Catalonia and Consejo Nacional de Ciencia y Tecnolog\u00EDa (CONACYT, Mexico). Sergi Nadal is partly supported by the Spanish Ministerio de Ciencia e Innovaci\u00F3n, as well as the European Union \u2013 NextGenerationEU, under project FJC2020-045809-I. |