Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/23M1569885 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the Murray adaptation of the Noyes--Field five-step model of the BelousovZhabotinsky (BZ) reaction in the case when a tuning parameter r, which determines the level of the bromide ion far ahead of the propagating wave, is bigger than 1 and when the delay in generation of the bromous acid is taken into account. The existence of wavefronts in the delayed BZ system was previously established only in the monostable situation with r \in (0, 1], the physically relevant bistable situation where r > 1 (in real experiments, r varies between 5 and 50) was left open. We complete the study by showing that the BZ system with r > 1 admits monotone traveling fronts. Note that one of the stable equilibria of the BZ model is not isolated. This circumstance does not allow the direct application of the topological or analytical methods previously elaborated for the analysis of the existence of bistable waves.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hasik, Karel | Hombre |
Silesian Univ - República Checa
Slezská univerzita v Opave - República Checa |
| 2 | Kopfova, Jana | Mujer |
Silesian Univ - República Checa
Slezská univerzita v Opave - República Checa |
| 3 | Nabelkova, Petra | Mujer |
Silesian Univ - República Checa
Slezská univerzita v Opave - República Checa |
| 4 | Trofimchuk, S. | Hombre |
Universidad de Talca - Chile
|
| Agradecimiento |
|---|
| Funding: The research of the first, second, and third authors was supported by institutional support for the development of research organizations I\vCO 47813059. The research of the fourth author was partially supported by FONDECYT (Chile) , project 1231169. |
| \\ast Received by the editors May 2, 2023; accepted for publication (in revised form) September 27, 2023; published electronically January 31, 2024. https://doi.org/10.1137/23M1569885 Funding: The research of the first, second, and third authors was supported by institutional support for the development of research organizations ICO\\v 47813059. The research of the fourth author was partially supported by FONDECYT (Chile), project 1231169. \\dagger Mathematical Institute, Silesian University, 746 01 Opava, Czech Republic (karel.hasik@ math.slu.cz, jana.kopfova@math.slu.cz, petra.nabelkova@math.slu.cz). \\ddagger Corresponding author. Instituto de Matem\\a'ticas, Universidad de Talca, Casilla 747, Talca, Chile (trofimch@inst-mat.utalca.cl). |