Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/CNM.2959 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Cardiac electrophysiology simulations are numerically challenging because of the propagation of a steep electrochemical wave front and thus require discretizations with small mesh sizes to obtain accurate results. In this work, we present an approach based on the hybridizable discontinuous Galerkin method (HDG), which allows an efficient implementation of high-order discretizations into a computational framework. In particular, using the advantage of the discontinuous function space, we present an efficient p-adaptive strategy for accurately tracking the wave front. The HDG allows to reduce the overall degrees of freedom in the final linear system to those only on the element interfaces. Additionally, we propose a rule for a suitable integration accuracy for the ionic current term depending on the polynomial order and the cell model to handle high-order polynomials. Our results show that for the same number of degrees of freedom, coarse high-order elements provide more accurate results than fine low-order elements. Introducing p-adaptivity further reduces computational costs while maintaining accuracy by restricting the use of high-order elements to resolve the wave front. For a patient-specific simulation of a cardiac cycle, p-adaptivity reduces the average number of degrees of freedom by 95% compared to the nonadaptive model. In addition to reducing computational costs, using coarse meshes with our p-adaptive high-order HDG method also simplifies practical aspects of mesh generation and postprocessing.
| Revista | ISSN |
|---|---|
| International #Journal For Numerical Methods In Biomedical Engineering | 2040-7939 |
| WOS |
|---|
| Mathematical & Computational Biology |
| Mathematics, Interdisciplinary Applications |
| Engineering, Biomedical |
| Scopus |
|---|
| Biomedical Engineering |
| Molecular Biology |
| Software |
| Modeling And Simulation |
| Applied Mathematics |
| Computational Theory And Mathematics |
| SciELO |
|---|
| Sin Disciplinas |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hoermann, Julia M. | Mujer |
TECH UNIV MUNICH - Alemania
Technical University of Munich - Alemania Technische Universität München - Alemania |
| 2 | Bertoglio, Cristobal | Hombre |
Universidad de Chile - Chile
Univ Groningen - Países Bajos University of Groningen - Países Bajos Rijksuniversiteit Groningen - Países Bajos |
| 3 | Kronbichler, Martin | Hombre |
TECH UNIV MUNICH - Alemania
Technical University of Munich - Alemania Technische Universität München - Alemania |
| 4 | Pfaller, Martin R. | Hombre |
TECH UNIV MUNICH - Alemania
Technical University of Munich - Alemania Technische Universität München - Alemania |
| 5 | Chabiniok, Radomir | Hombre |
Paris Saclay Univ - Francia
Kings Coll London - Reino Unido Universite Paris-Saclay - Francia Guy's and St Thomas' NHS Foundation Trust - Reino Unido St Thomas' Hospital - Reino Unido |
| 6 | Wall, Wolfgang A. | Hombre |
TECH UNIV MUNICH - Alemania
Technical University of Munich - Alemania Technische Universität München - Alemania |