Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Textual Pre-Trained Models for Age Screening Across Community Question-Answering
Indexado
WoS WOS:001176113800001
Scopus SCOPUS_ID:85186085984
DOI 10.1109/ACCESS.2024.3368929
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Almost every community Question-Answering (cQA) platform has the pressing need of enhancing user experience by presenting dedicated displays, connecting potential answerers with open questions and revitalizing the material in their archives. In doing so, it is crucial to understand the profile of their community members, especially as it relates to their demographics. In this realm, variables such as age and gender have shown to be particularly promising for managing content. For instance, they make it easier to connect questions posted by one generation that are more likely to be answered by individuals from the previous generation. This paper advances the current body of knowledge in this area by exploring the performance of nineteen frontier transformer-based models (e.g., BERT and ELECTRA) on age recognition across a large-scale collection of cQA members. In effect, the best encoder (LongFormer) finished with an accuracy of 78.61% (F1-Score of 0.7424) by taking full-questions and answers into account. Unlike gender recognition, our outcomes do not show a noticeable difference between cased and uncased models. But on the other hand, they confirm that the transition from one age group to the other is smooth, and thus boundary individuals pose a tough challenge to discriminant models built on top of frontier machine learning approaches.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 FIGUEROA-AMENABAR, ALEJANDRO GASTON Hombre Universidad Tecnológica Metropolitana - Chile
2 Timilsina, Mohan Hombre Univ Galway - Irlanda
University of Galway - Irlanda

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Patagon supercomputer of Universidad Austral de Chile
Fondecyt ''Multimodal Demographics and Psychographics for Improving Engagement in Question Answering Communities'' - Chilean Government

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the project Fondecyt ''Multimodal Demographics and Psychographics for Improving Engagement in Question Answering Communities'' funded by Chilean Government under Grant 1220367, and in part by the Patagon Supercomputer of Universidad Austral de Chile under Grant FONDEQUIP EQM180042.

Muestra la fuente de financiamiento declarada en la publicación.