Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1137/23M1550360 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
At the fully discrete setting, stability of the discontinuous Petrov-Galerkin (DPG) method with optimal test functions requires local test spaces that ensure the existence of Fortin operators. We construct such operators for H1 and H(div) on simplices in any space dimension and arbitrary polynomial degree. The resulting test spaces are smaller than previously analyzed cases. For parameter-dependent norms, we achieve uniform boundedness by the inclusion of face bubble functions that are polynomials on faces and decay exponentially in the interior. As an example, we consider a canonical DPG setting for reaction-dominated diffusion. Our test spaces guarantee uniform stability and quasi-optimal convergence of the scheme. We present numerical experiments that illustrate the loss of stability and error control by the residual for small diffusion coefficient when using standard polynomial test spaces, whereas we observe uniform stability and error control with our construction.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fuhrer, Thomas | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | Heuer, N. | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| ANID through FONDECYT |
| Agradecimiento |
|---|
| The work of the authors was supported by the ANID through FONDECYT projects 1210391 and 1230013. |
| \\ast Received by the editors January 31, 2023; accepted for publication (in revised form) November 13, 2023; published electronically March 5, 2024. https://doi.org/10.1137/23M1550360 Funding: The work of the authors was supported by the ANID through FONDECYT projects 1210391 and 1230013. \\dagger Facultad de Matem\\a'ticas, Pontificia Universidad Cat\\o'lica de Chile, Santiago, Chile (tofuhrer@mat.uc.cl, https://www.mat.uc.cl/\\sim tofuhrer/, nheuer@mat.uc.cl, https://www.mat.uc. cl/\\sim nheuer/). |