Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVB.97.174404 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Symmetry and localization properties of defect modes of a one-dimensional bicomponent magnonic superlattice are theoretically studied. The magnonic superlattice can be seen as a periodic array of nanostripes, where stripes with different widths, termed defect stripes, are periodically introduced. By controlling the geometry of the defect stripes, a transition from dispersive to practically flat spin-wave defect modes can be observed inside the magnonic band gaps. It is shown that the spin-wave profile of the defect modes can be either symmetric or antisymmetric, depending on the geometry of the defect. Due to the localized character of the defect modes, a particular magnonic superlattice is proposed wherein the excitation of both symmetric and antisymmetric flat magnonic modes is enabled at the same time. Also, it is demonstrated that the relative frequency position of the antisymmetric mode inside the band gap does not significantly change with the application of an external field, while the symmetric modes move to the edges of the frequency band gaps. The results are complemented by numerical simulations, where excellent agreement is observed between the methods. The proposed theory allows exploring different ways to control the dynamic properties of the defect modes in metamaterial magnonic superlattices, which can be useful for applications on multifunctional microwave devices operating over a broad frequency range.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GALLARDO-ENCINA, RODOLFO ANDRES | Hombre |
Universidad Técnica Federico Santa María - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| 2 | Schneider, T. | Hombre |
Helmholtz Zentrum Dresden Rossendorf - Alemania
Tech Univ Chemnitz - Alemania HZDR - Helmholtz-Zentrum Dresden-Rossendorf - Alemania Technische Universität Chemnitz - Alemania |
| 3 | ROLDAN-MOLINA, ALEJANDRO RENE | Hombre |
Universidad de Aysen - Chile
|
| 4 | Langer, M. | - |
Helmholtz Zentrum Dresden Rossendorf - Alemania
Paul Scherrer Inst - Suiza HZDR - Helmholtz-Zentrum Dresden-Rossendorf - Alemania Paul Scherrer Institut - Suiza |
| 5 | NUNEZ-VASQUEZ, ALVARO SEBASTIAN | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Universidad de Chile - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| 6 | Lenz, K. | Hombre |
Helmholtz Zentrum Dresden Rossendorf - Alemania
HZDR - Helmholtz-Zentrum Dresden-Rossendorf - Alemania |
| 7 | Lindner, Jurgen | Hombre |
Helmholtz Zentrum Dresden Rossendorf - Alemania
HZDR - Helmholtz-Zentrum Dresden-Rossendorf - Alemania |
| 8 | Landeros, Pedro | Hombre |
Universidad Técnica Federico Santa María - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile Center for the Development of Nanoscience and Nanotechnology - Chile |
| Fuente |
|---|
| FONDECYT |
| Basal Program for Centers of Excellence |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| DAAD |
| European Commission |
| European Union |
| Deutsche Forschungsgemeinschaft |
| Deutscher Akademischer Austauschdienst |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Horizon 2020 |
| Horizon 2020 Framework Programme |
| Basal Program for Centers of Excellence, CONICYT |
| CONICYT PAI/ACADEMIA |
| In-ProTUC scholarship |
| In-ProTUC |
| Agradecimiento |
|---|
| R.A.G. acknowledges financial support from FONDECYT Iniciacion Grant No. 11170736 and CONICYT PAI/ACADEMIA Grant No. 79140033. This work was also supported by FONDECYT 1161403 and 1150072, and the Basal Program for Centers of Excellence, Grant No. FB0807 CEDENNA, CONICYT. T.S. acknowledges funding from the Deutsche Forschungsgemeinschaft (Grant No. GE1202/9-2) and funding from the In-ProTUC scholarship. M.L. acknowledges the funding from the Deutsche Forschungsgemeinschaft (Grant No. LE2443/5-1) as well as the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska Curie (Grant No. 701647). Funding from DAAD Grant No. ALECHILE57136331 and CONICYTPCCI140051 are also highly acknowledged. |
| R.A.G. acknowledges financial support from FONDECYT Iniciacion Grant No. 11170736 and CONICYT PAI/ACADEMIA Grant No. 79140033. This work was also supported by FONDECYT 1161403 and 1150072, and the Basal Program for Centers of Excellence, Grant No. FB0807 CEDENNA, CONICYT. T.S. acknowledges funding from the Deutsche Forschungsgemeinschaft (Grant No. GE1202/9-2) and funding from the In-ProTUC scholarship. M.L. acknowledges the funding from the Deutsche Forschungsgemeinschaft (Grant No. LE2443/5-1) as well as the European Union's Horizon 2020 research and innovation programme under Marie Skłodowska Curie (Grant No. 701647). Funding from DAAD Grant No. ALECHILE 57136331 and CONICYT PCCI140051 are also highly acknowledged. |