Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Nitrogen sensing and regulatory networks: it's about time and space
Indexado
WoS WOS:001180829200001
Scopus SCOPUS_ID:85192027491
DOI 10.1093/PLCELL/KOAE038
Año 2024
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.

Revista



Revista ISSN
Plant Cell 1040-4651

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Plant Sciences
Cell Biology
Biochemistry & Molecular Biology
Scopus
Plant Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Shanks, Carly Mujer NYU - Estados Unidos
New York University - Estados Unidos
2 ROTHKEGEL-AGURTO, KARIN Mujer Núcleo Milenio en Biología Sintética y Biología de Sistemas Vegetales - Chile
Pontificia Universidad Católica de Chile - Chile
Millennium Institute for Integrative Biology (iBio) - Chile
Instituto Milenio de Biología Integrativa - Chile
3 Brooks, Matthew D. - USDA ARS - Estados Unidos
USDA Agricultural Research Service - Estados Unidos
4 Cheng, Chia-Yi - Natl Taiwan Univ - Taiwán
National Taiwan University - Taiwán
5 ALVAREZ-HERRERA, JOSE MIGUEL Hombre Universidad Nacional Andrés Bello - Chile
Millennium Institute for Integrative Biology (iBio) - Chile
Instituto Milenio de Biología Integrativa - Chile
Facultad de Ciencias de la Vida - Chile
6 Ruffel, Sandrine Mujer Univ Montpellier - Francia
Université de Montpellier - Francia
7 Krouk, Gabriel Hombre Univ Montpellier - Francia
Université de Montpellier - Francia
8 GUTIERREZ-ILABACA, RODRIGO ANTONIO Hombre Núcleo Milenio en Biología Sintética y Biología de Sistemas Vegetales - Chile
Pontificia Universidad Católica de Chile - Chile
Millennium Institute for Integrative Biology (iBio) - Chile
Instituto Milenio de Biología Integrativa - Chile
9 Coruzzi, Gloria M. Mujer NYU - Estados Unidos
New York University - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
NIH
Fondo Nacional de Desarrollo Científico y Tecnológico
National Institutes of Health
Agence Nationale de la Recherche
Center for Genome Regulation
National Institute of General Medical Sciences
Ministry of Science and Technology, Taiwan
Université de Montpellier
Zegar Family Foundation
NIH NIGMS Fellowship
ANID Fondecyt
NSF-PGRP
ANID-Fondecyt
ANID-FONDECYT POSTDOCTORADO
ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology
Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio)
Metaprogram DIGIT-BIO from INRAE
ANR (the French National Research Agency), under the "Investissements d'avenir"
ANR Plan de Relance TravelPep
MUSE University of Montpellier research grant
MOST research grant (NSTC)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the NSF-PGRP IOS-1840761 grant to GC and JMA, the Zegar Family Foundation (A16-0051) grant to GC, the NIH RO1-GM121753 grant to GC, the NIH NIGMS Fellowship F32GM139299 to CS, the ANID-FONDECYT Postdoctorado 3220033 to KR, and the MOST research grant (NSTC 112-2313-B-002-018-MY3) to CYC. RG's research is supported by ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio) (ICN17_022), the Center for Genome Regulation (ICN2021_044), and the FONDECYT 1180759. JMA's research is supported by the ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), the ANID FONDECYT 1210389. SR research is supported by the Metaprogram DIGIT-BIO from INRAE and the ANR Plan de Relance TravelPep. GK's research is supported by MUSE University of Montpellier research grant (AI3P: Artificial Intelligence to Predict Phenotypes in Plants), the ANR (the French National Research Agency), under the "Investissements d'avenir" program with the reference ANR-16-IDEX-0006.
This work was supported by the NSF-PGRP IOS-1840761 grant to GC and JMA, the Zegar Family Foundation (A16-0051) grant to GC, the NIH RO1-GM121753 grant to GC, the NIH NIGMS Fellowship F32GM139299 to CS, the ANID-FONDECYT Postdoctorado 3220033 to KR, and the MOST research grant (NSTC 112-2313-B-002-018-MY3) to CYC. RG\u2019s research is supported by ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio) (ICN17_022), the Center for Genome Regulation (ICN2021_044), and the FONDECYT 1180759. JMA\u2019s research is supported by the ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), the ANID FONDECYT 1210389. SR research is supported by the Metaprogram DIGIT-BIO from INRAE and the ANR Plan de Relance TravelPep. GK\u2019s research is supported by MUSE University of Montpellier research grant (AI3P: Artificial Intelligence to Predict Phenotypes in Plants), the ANR (the French National Research Agency), under the \u201CInvestissements d\u2019avenir\u201D program with the reference ANR-16-IDEX-0006.

Muestra la fuente de financiamiento declarada en la publicación.