Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-319-59226-8_8 | ||||
| Año | 2017 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Similarity searching consists in retrieving from a database the objects, also known as nearest neighbors, that are most similar to a given query, it is a crucial task to several applications of the pattern recognition problem. In this paper we propose a new technique to reduce the number of comparisons needed to locate the nearest neighbors of a query. This new index takes advantage of two known algorithms: FHQT (Fixed Height Queries Tree) and PBA (Permutation-Based Algorithm), one for low dimension and the second for high dimension. Our results show that this combination brings out the best of both algorithms, this winner combination of FHQT and PBA locates nearest neighbors up to four times faster in high dimensions leaving the known well performance of FHQT in low dimensions unaffected.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Figueroa, Karina | Mujer |
Univ Michoacana - México
Universidad Michoacana de San Nicolás de Hidalgo - México |
| 2 | PAREDES-MORALEDA, RODRIGO ANDRES | Hombre |
Universidad de Talca - Chile
|
| 3 | CAMARENA-IBARROLA, JOSE ANTONIO | Hombre |
Univ Michoacana - México
Universidad Michoacana de San Nicolás de Hidalgo - México |
| 3 | Camarena-Ibarrola, Antonio | Hombre |
Universidad Michoacana de San Nicolás de Hidalgo - México
|
| 4 | REYES, NORA SUSANA | Mujer |
UNIV NACL SAN LUIS - Argentina
Universidad Nacional de San Luis - Argentina |
| 5 | CarrascoOchoa, JA | - | |
| 6 | MartinezTrinidad, JF | - | |
| 7 | OlveraLopez, JA | - |