Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.7900/JOT.2022MAR16.2385 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We introduce a notion of smooth fields of operators following the notion of smooth fields of Hilbert spaces defined by L. Lempert and R. Szoke. We show that, if V is the connection of a smooth field of Hilbert spaces, then del = [del ,center dot ] defines a connection on a suitable space of fields of operators. We prove a smooth version of the reduction theorem and we apply it to show that, if h(q,p) = IIpII2 and {u, h} = 0 then Weyl quantization maps u into an operator admitting a decomposition as a smooth field of operators over the interval (0, infinity). Moreover, we prove an explicit formula to compute the derivatives of those fields of operators. We also introduce a notion of smooth field of C* -algebras and we provide an explicit example.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Belmonte, Fabian | Hombre |
Universidad Católica del Norte - Chile
|
| 2 | Bustos, H. | - |
Universidad Austral de Chile - Chile
|
| 3 | Cuellar, Sebastian | Hombre |
Universidad Católica del Norte - Chile
|