Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators
Indexado
WoS WOS:001186177400003
Scopus SCOPUS_ID:85188530855
DOI 10.4171/RMI/1443
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We estimate the lowest eigenvalue in the gap of the essential spectrum of a Dirac operator with mass in terms of a Lebesgue norm of the potential. Such a bound is the counterpart for Dirac operators of the Keller estimates for the Schrodinger operator, which are equivalent to some Gagliardo-Nirenberg-Sobolev interpolation inequalities. Domain, self-adjointness, optimality and critical values of the norms are addressed, while the optimal potential is given by a Dirac equation with a Kerr nonlinearity. A new critical bound appears, which is the smallest value of the norm of the potential for which eigenvalues may reach the bottom of the gap in the essential spectrum. The Keller estimate is then extended to a Lieb-Thirring inequality for the eigenvalues in the gap. Most of our result are established in the Birman-Schwinger reformulation.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Dolbeault, Jean Hombre Univ Paris 09 - Francia
Centre de Recherche en Mathematiques de la Decision - Francia
2 Gontier, David - Univ Paris 09 - Francia
PSL Univ - Francia
Centre de Recherche en Mathematiques de la Decision - Francia
Ecole Normale Superieure - Francia
3 Pizzichillo, Fabio Hombre Univ Politecn Madrid - España
Universidad Politécnica de Madrid - España
4 Van den Bosch, Hanne Mujer Universidad de Chile - Chile
CNRS - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Chile
Fondo Nacional de Desarrollo Científico y Tecnológico
European Regional Development Fund
European Research Council
Agence Nationale de la Recherche
European Research Council (ERC)
Centre National de la Recherche Scientifique
Horizon 2020 Framework Programme
Project EFI of the French National Research Agency (ANR)
Mathamsud project
ANR
Agencia Nacional de Investigación y Desarrollo
European Forest Institute
ANID/FONDECYT
Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas
MCIN/AEI, UE
Center for Mathematical Modeling through ANID/Basal projects

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR) . HVDB received funding from the Center for Mathematical Modeling (Universidad de Chile and CNRS IRL 2807) through ANID/Basal projects #FB210005 and #ACE210010, as well as ANID/Fondecyt project #11220194, and MathAmSud project EEQUADDII 20 -MATH -04. This work was partially developed when FP was employed at CNRS and CEREMADE-Universite Paris-Dauphine, and supported by the project ANR-17-CE29-0004 molQED of the ANR and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement MDFT no. 725528) . He is also supported by the project PID2021-123034NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER, UE.
Funding. This work was partially supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). HVDB received funding from the Center for Mathematical Modeling (Universidad de Chile and CNRS IRL 2807) through ANID/Basal projects #FB210005 and #ACE210010, as well as ANID/Fondecyt project #11220194, and MathAmSud project EEQUADDII 20-MATH-04. This work was partially developed when FP was employed at CNRS and CEREMADE-Université Paris-Dauphine, and supported by the project ANR-17-CE29-0004 molQED of the ANR and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement MDFT no. 725528). He is also supported by the project PID2021-123034NB-I00 funded by MCIN/AEI/10.13039/501100011033/ FEDER, UE.
Funding. This work was partially supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). HVDB received funding from the Center for Mathematical Modeling (Universidad de Chile and CNRS IRL 2807) through ANID/Basal projects #FB210005 and #ACE210010, as well as ANID/Fondecyt project #11220194, and MathAmSud project EEQUADDII 20-MATH-04. This work was partially developed when FP was employed at CNRS and CEREMADE-Université Paris-Dauphine, and supported by the project ANR-17-CE29-0004 molQED of the ANR and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement MDFT no. 725528). He is also supported by the project PID2021-123034NB-I00 funded by MCIN/AEI/10.13039/501100011033/ FEDER, UE.

Muestra la fuente de financiamiento declarada en la publicación.