Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.3389/FNINS.2024.1333243 | ||
| Año | 2024 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the pip library.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Rodriguez, Lazara Liset Gonzalez | Mujer |
Universidad de Concepción - Chile
|
| 2 | Osorio, Ignacio | Hombre |
Universidad de Concepción - Chile
|
| 3 | Cofre, G. Alejandro | - |
Universidad de Concepción - Chile
|
| 4 | Larzabal, Hernan Hernandez | - |
Universidad de Concepción - Chile
Universidad Adolfo Ibáñez - Chile |
| 5 | ROMAN-GODOY, CLAUDIO ESTEBAN | Hombre |
Universidad de Valparaíso - Chile
|
| 6 | Poupon, C. | Hombre |
Univ Paris Saclay - Francia
|
| 7 | Mangin, Jean-Francois | Hombre |
Univ Paris Saclay - Francia
|
| 8 | HERNANDEZ-RIVAS, CECILIA PAOLA | Mujer |
Universidad de Concepción - Chile
Ctr Biotechnol & Bioengn CeBiB - Chile |
| 9 | GUEVARA-ALVEZ, PAMELA BEATRIZ | Mujer |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| McDonnell Center for Systems Neuroscience at Washington University |
| NIH Blueprint for Neuroscience Research |
| NIH Institutes and Centers |
| Agencia Nacional de Investigacin y Desarrollo10.13039/501100020884 |
| Agradecimiento |
|---|
| HCP Data were provided by the Human Connectome Project, WUMinn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657), funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. |