Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVD.109.063511 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The matter power spectrum P(k) is one of the main quantities connecting observational and theoretical cosmology. Although for a fixed redshift this can be numerically computed very efficiently by Boltzmann solvers, an analytical description is always desirable. However, accurate fitting functions for P(k) are only available for the concordance model. Taking into account that forthcoming surveys will further constrain the parameter space of cosmological models, it is also of interest to have analytical formulations for P(k) when alternative models are considered. Here, we use the genetic algorithms, a machine learning technique, to find a parametric function for P(k) considering several possible effects imprinted by modifications of gravity. Our expression for the P(k) of modified gravity shows a mean accuracy of around 1-2% when compared with numerical data obtained via modified versions of the Boltzmann solver CLASS, and thus it represents a competitive formulation given the target accuracy of forthcoming surveys.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Orjuela-Quintana, J. Bayron | - |
UNIV VALLE - Colombia
Universidad del Valle, Cali - Colombia |
| 2 | Nesseris, S. | Hombre |
UNIV AUTONOMA MADRID - España
Universidad Autónoma de Madrid - España |
| 3 | Sapone, Domenico | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondecyt Regular |
| Agencia Estatal de Investigación |
| UK Research and Innovation |
| Spanish Research Agency |
| Fondo Nacional de Financiamiento para la Ciencia |
| Patrimonio Autonomo-Fondo Nacional de Financiamiento para la Ciencia, la Tecnologia y la Innovacion Francisco Jose de Caldas (MINCIENCIAS-COLOMBIA) |
| Fondecyt Regular - MCIN/AEI |
| Spanish Research Agency (Agencia Estatal de Investigacion) through the Grant IFT Centro de Excelencia Severo Ochoa - MCIN/AEI |
| Patrimonio Autónomo |
| Agradecimiento |
|---|
| B. O. Q. acknowledges support from Patrimonio Autonomo-Fondo Nacional de Financiamiento para la Ciencia, la Tecnologia y la Innovacion Francisco Jose de Caldas (MINCIENCIAS-COLOMBIA) Grant No. 110685269447 RC-80740-465-2020, Projects No. 69723 and No. 69553. S. N. acknowledges support from the research Project No. PID2021-123012NB-C43, and by the Spanish Research Agency (Agencia Estatal de Investigacion) through the Grant IFT Centro de Excelencia Severo Ochoa No. CEX2020-001007-S, funded by MCIN/AEI/10.13039/501100011033. D. S. acknowledges financial support from the Fondecyt Regular Project No. 1200171.r Investigacion) through the Grant IFT Centro de Excelencia Severo Ochoa No. CEX2020-001007-S, funded by MCIN/AEI/10.13039/501100011033. D. S. acknowledges financial support from the Fondecyt Regular Project No. 1200171. |
| B.\u2009O.\u2009Q. acknowledges support from Patrimonio Aut\u00F3nomo\u2014Fondo Nacional de Financiamiento para la Ciencia, la Tecnolog\u00EDa y la Innovaci\u00F3n Francisco Jos\u00E9 de Caldas (MINCIENCIAS\u2014COLOMBIA) Grant No. 110685269447 RC-80740-465-2020, Projects No. 69723 and No. 69553. S.\u2009N. acknowledges support from the research Project No. PID2021-123012NB-C43, and by the Spanish Research Agency (Agencia Estatal de Investigaci\u00F3n) through the Grant IFT Centro de Excelencia Severo Ochoa No. CEX2020-001007-S, funded by MCIN/AEI/10.13039/501100011033. D.\u2009S. acknowledges financial support from the Fondecyt Regular Project No. 1200171. |