Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/GJI/GGAE113 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The reduction of effective normal stress during earthquake slip due to thermal pressurization of fault zone pore fluids is a significant fault weakening mechanism. Explicit incorporation of this process into frictional fault models involves solving the diffusion equations for fluid pressure and temperature outside the fault at each time step, which significantly increases the computational complexity. Here, we propose a proxy for thermal pressurization implemented through a modification of the rate-and-state friction law. This approach is designed to emulate the fault weakening and the relationship between breakdown energy and slip resulting from thermal pressurization and is appropriate for fully dynamic simulations of multiple earthquake cycles. It preserves the computational efficiency of conventional rate-and-state friction models, which in turn can enable systematic studies to advance our understanding of the effects of fault weakening on earthquake mechanics. In 2.5-D simulations of pulse-like ruptures on faults with finite seismogenic width, based on our thermal pressurization proxy, we find that the spatial distribution of slip velocity near the rupture front is consistent with the conventional square-root singularity, despite continued slip-weakening within the pulse, once the rupture has propagated a distance larger than the rupture width. An unconventional singularity appears only at shorter rupture distances. We further derive and verify numerically a theoretical estimate of the breakdown energy dissipated by our implementation of thermal pressurization. These results support the use of fracture mechanics theory to understand the propagation and arrest of very large earthquakes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Herrera, Marco T. | - |
Pontificia Universidad Católica de Chile - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile National Research Center for Integrated Natural Disaster Management - Chile |
| 2 | Ampuero, Jean P. | Hombre |
Unive Cote Azur - Francia
Observatoire de la Côte d'Azur - Francia |
| 3 | Crempien, Jorge G. F. | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile National Research Center for Integrated Natural Disaster Management - Chile |
| Fuente |
|---|
| Agence Nationale de la Recherche |
| Agencia Nacional de Investigación y Desarrollo |
| ANID/FONDECYT |
| Université Côte d’Azur |
| French government through the UCAJEDI Investments in the Future project |
| ANID/FONDAP (Centro de Investigacion para la Gestion Integrada del Riesgo de Desastres [CIGIDEN]) |
| ANID 'Agencia Nacional de Investigacion y Desarrollo Subdireccion de Capital Humano/Doctorado Nacional/2020' National PhD scholarship |
| Agencia Nacional de Investigación y Desarrollo Subdirección de Capital Humano/Doctorado Nacional/2020 |
| Agradecimiento |
|---|
| MTH acknowledges the support by ANID 'Agencia Nacional de Investigacion y Desarrollo Subdireccion de Capital Humano/Doctorado Nacional/2020' National PhD scholarship 21201352. JPA was supported by the French government through the UCAJEDI Investments in the Future project (ANR-15-IDEX-01) managed by the National Research Agency (ANR). The authors are grateful to the OPAL infrastructure and the Universite Cote d'Azur's Center for High-Performance Computing for providing resources and support. MTH and JGFC acknowledge the funding support by ANID/FONDAP/15110017 (Centro de Investigacion para la Gestion Integrada del Riesgo de Desastres [CIGIDEN]). JGFC acknowledges support from ANID/FONDECYT/11201180 (Dynamic Rupture on Faults with Heterogeneous Frictional Properties). |
| MTH acknowledges the support by ANID \u2018Agencia Nacional de Investigaci\u00F3n y Desarrollo Subdirecci\u00F3n de Capital Humano/Doctorado Nacional/2020\u2019 National PhD scholarship 21201352. JPA was supported by the French government through the UCAJEDI Investments in the Future project (ANR-15-IDEX-01) managed by the National Research Agency (ANR). The authors are grateful to the OPAL infrastructure and the Universit\u00E9 C\u00F4te d\u2019Azur\u2019s Center for High-Performance Computing for providing resources and support. MTH and JGFC acknowledge the funding support by ANID/FONDAP/15110017 (Centro de Investigaci\u00F3n para la Gesti\u00F3n Integrada del Riesgo de Desastres [CIGIDEN]). JGFC acknowledges support from ANID/FONDECYT/11201180 (Dynamic Rupture on Faults with Heterogeneous Frictional Properties). |