Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JALGEBRA.2024.01.043 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In [16], a theory of universal extensions in abelian categories is developed; in particular, the notion of Ext1-universal object is presented. In the present paper, we show that an Ab3 abelian category which is Ext1-small satisfies the Ab4 condition if, and only if, each one of its objects is Ext1-universal. We use the dual of this result to construct projective effacements in Grothendieck categories. In particular, we complete the classical result of Roos on Grothendieck categories which are Ab4*, with a new proof, independent of [20]. We also give a characterization of the co-Ext1-universal objects of the category of torsion abelian groups. In particular, we show that such groups are the ones admitting a decomposition Q circle plus R, in which Q is injective and R is a reduced group in which each p -component is bounded. (c) 2024 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Argudin-Monroy, Alejandro | - |
UNAM - México
UNAM Campus Morelia - México |
| 2 | Parra, Carlos E. | Hombre |
Universidad Austral de Chile - Chile
|
| Fuente |
|---|
| Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico |
| PEDECIBA MEC-UDELAR |
| Agradecimiento |
|---|
| The first named author was supported by a postdoctoral fellowship from PEDECIBA MEC-UDELAR. He is currently supported with a postdoctoral fellowship from Programa de Becas Posdoctorales en la UNAM, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México.The second named author was supported by ANID+FONDECYT/REGULAR+1200090. |