Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10915-024-02513-5 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In two-dimensional bounded Lipschitz domains, we analyze a convective Brinkman-Forchheimer problem on the weighted spaces H01(omega,omega)xL2(omega,omega)/R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {H}}}_0<^>1(\omega ,\varOmega ) \times L<^>2(\omega ,\varOmega )/{\mathbb {R}}$$\end{document}, where omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} belongs to the Muckenhoupt class A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_2$$\end{document}. Under a suitable smallness assumption, we prove the existence and uniqueness of a solution. We propose a finite element method and obtain a quasi-best approximation result in the energy norm a la Cea under the assumption that omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is convex. We also develop an a posteriori error estimator and study its reliability and efficiency properties. Finally, we develop an adaptive method that yields optimal experimental convergence rates for the numerical examples we perform.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Allendes, Alejandro | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Campaña, Gilberto | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | OTAROLA-PASTEN, ENRIQUE HOMERO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| Subdirección de Capital Humano/Doctorado Nacional/2020 |