Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S44196-024-00488-7 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
One of the problems with exact techniques for solving combinatorial optimization problems is that they tend to run into problems with growing problem instance size. Nevertheless, they might still be very usefully employed, even in the context of large problem instances, as a sub-ordinate method within so-called hybrid metaheuristics. "Construct, Merge, Solve and Adapt" (Cmsa) is a hybrid metaheuristic technique that allows the application of exact methods to large-scale problem instances through intelligent instance reduction. However, Cmsa does not make use of an explicit learning mechanism. In this work, an algorithm called L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} is presented for the application to the far from most string problem (FFMSP), which is an NP-hard combinatorial optimization problem from the field of string consensus problems. L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} results from hybridization between Cmsa and a population-based algorithm. By means of this hybridization, explicit learning is introduced to Cmsa. Even though the FFMSP is a well-studied problem, L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} achieves superior performance when compared to current state-of-the-art solvers.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | PINACHO-DAVIDSON, PEDRO PABLO | Hombre |
Universidad de Concepción - Chile
|
| 2 | Blum, Christian | Hombre |
CSIC - España
CSIC - Instituto de Investigacion en Inteligencia Artificial (IIIA) - España |
| 3 | Pinninghoff, M. Angelica | - |
Universidad de Concepción - Chile
|
| 4 | CONTRERAS-ARRIAGADA, RICARDO | Hombre |
Universidad Adolfo Ibáñez - Chile
|
| Fuente |
|---|
| Universidad de Concepción |
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Consejo Superior de Investigaciones Científicas |
| Springer Nature |
| MCIN/AEI |
| CRUE-CSIC |
| Agradecimiento |
|---|
| Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Pinacho-Davidson acknowledges financial support from FONDECYT through grant number 11230359.C. Blum was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033. |
| Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Pinacho-Davidson acknowledges financial support from FONDECYT through grant number 11230359. C. Blum was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033. |
| Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Pinacho-Davidson acknowledges financial support from FONDECYT through grant number 11230359. C. Blum was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033. |