Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Extension of CMSA with a Learning Mechanism: Application to the Far from Most String Problem
Indexado
WoS WOS:001209820000002
Scopus SCOPUS_ID:85191862376
DOI 10.1007/S44196-024-00488-7
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



One of the problems with exact techniques for solving combinatorial optimization problems is that they tend to run into problems with growing problem instance size. Nevertheless, they might still be very usefully employed, even in the context of large problem instances, as a sub-ordinate method within so-called hybrid metaheuristics. "Construct, Merge, Solve and Adapt" (Cmsa) is a hybrid metaheuristic technique that allows the application of exact methods to large-scale problem instances through intelligent instance reduction. However, Cmsa does not make use of an explicit learning mechanism. In this work, an algorithm called L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} is presented for the application to the far from most string problem (FFMSP), which is an NP-hard combinatorial optimization problem from the field of string consensus problems. L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} results from hybridization between Cmsa and a population-based algorithm. By means of this hybridization, explicit learning is introduced to Cmsa. Even though the FFMSP is a well-studied problem, L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} achieves superior performance when compared to current state-of-the-art solvers.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 PINACHO-DAVIDSON, PEDRO PABLO Hombre Universidad de Concepción - Chile
2 Blum, Christian Hombre CSIC - España
CSIC - Instituto de Investigacion en Inteligencia Artificial (IIIA) - España
3 Pinninghoff, M. Angelica - Universidad de Concepción - Chile
4 CONTRERAS-ARRIAGADA, RICARDO Hombre Universidad Adolfo Ibáñez - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Concepción
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Consejo Superior de Investigaciones Científicas
Springer Nature
MCIN/AEI
CRUE-CSIC

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Pinacho-Davidson acknowledges financial support from FONDECYT through grant number 11230359.C. Blum was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033.
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Pinacho-Davidson acknowledges financial support from FONDECYT through grant number 11230359. C. Blum was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033.
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Pinacho-Davidson acknowledges financial support from FONDECYT through grant number 11230359. C. Blum was supported by grants TED2021-129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033.

Muestra la fuente de financiamiento declarada en la publicación.