Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Non-Thermal Solar Wind Electron Velocity Distribution Function
Indexado
WoS WOS:001210313700001
Scopus SCOPUS_ID:85191612007
DOI 10.3390/E26040310
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The quiet-time solar wind electrons feature non-thermal characteristics when viewed from the perspective of their velocity distribution functions. They typically have an appearance of being composed of a denser thermal "core" population plus a tenuous energetic "halo" population. At first, such a feature was empirically fitted with the kappa velocity space distribution function, but ever since the ground-breaking work by Tsallis, the space physics community has embraced the potential implication of the kappa distribution as reflecting the non-extensive nature of the space plasma. From the viewpoint of microscopic plasma theory, the formation of the non-thermal electron velocity distribution function can be interpreted in terms of the plasma being in a state of turbulent quasi-equilibrium. Such a finding brings forth the possible existence of a profound inter-relationship between the non-extensive statistical state and the turbulent quasi-equilibrium state. The present paper further develops the idea of solar wind electrons being in the turbulent equilibrium, but, unlike the previous model, which involves the electrostatic turbulence near the plasma oscillation frequency (i.e., Langmuir turbulence), the present paper considers the impact of transverse electromagnetic turbulence, particularly, the turbulence in the whistler-mode frequency range. It is found that the coupling of spontaneously emitted thermal fluctuations and the background turbulence leads to the formation of a non-thermal electron velocity distribution function of the type observed in the solar wind during quiet times. This demonstrates that the whistler-range turbulence represents an alternative mechanism for producing the kappa-like non-thermal distribution, especially close to the Sun and in the near-Earth space environment.

Revista



Revista ISSN
Entropy 1099-4300

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Multidisciplinary
Scopus
Information Systems
Electrical And Electronic Engineering
Mathematical Physics
Physics And Astronomy (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Yoon, P. H. Hombre UNIV MARYLAND - Estados Unidos
College of Computer, Mathematical, & Natural Sciences - Estados Unidos
2 Lopez, Rodrigo A. - Comision Chilena de Energia Nuclear - Chile
3 Salem, Chadi S. - UNIV CALIF BERKELEY - Estados Unidos
Space Sciences Laboratory - Estados Unidos
4 Bonnell, John W. - UNIV CALIF BERKELEY - Estados Unidos
Space Sciences Laboratory - Estados Unidos
5 Kim, Sunjung - Kyung Hee Univ - Corea del Sur
Kyung Hee University - Corea del Sur

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
National Research Foundation of Korea
U.S. Department of Energy
University of Maryland
United States Department of Energy
DOE Partnership in Basic Plasma Science and Engineering

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
No Statement Available
This material is based upon work funded by the Department of Energy (DE-SC0022963) through the NSF/DOE Partnership in Basic Plasma Science and Engineering. This research was also partially supported by NSF Grants 2203321 to the University of Maryland. S.K. was supported by the National Research Foundation (NRF) of Korea through grant no. 2022R1I1A1A01070881.

Muestra la fuente de financiamiento declarada en la publicación.