Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments
Indexado
WoS WOS:001210338700001
Scopus SCOPUS_ID:85192525416
DOI 10.3390/APP14083206
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Due to the widespread use of mobile and IoT devices, coupled with their continually expanding processing capabilities, dew computing environments have become a significant focus for researchers. These environments enable resource-constrained devices to contribute computing power to a local network. One major challenge within these environments revolves around task scheduling, specifically determining the optimal distribution of jobs across the available devices in the network. This challenge becomes particularly pronounced in dynamic environments where network conditions constantly change. This work proposes integrating the "reliability" concept into cutting-edge human-design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic and ever-changing network conditions caused by nodes' mobility. Additionally, we introduce a reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network status into the RL agent. Our research rigorously contrasts our proposed algorithms' throughput and job completion rates with their predecessors. Simulated results reveal a marked improvement in overall throughput, with our algorithms potentially boosting the environment's performance. They also show a significant enhancement in job completion within dynamic environments compared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of human-designed heuristics. Our study emphasizes the advantages of embedding inherent network characteristics into job distribution algorithms for dew computing. Such incorporation gives them a profound understanding of the network's diverse resources. Consequently, this insight enables the algorithms to manage resources more adeptly and effectively.

Revista



Revista ISSN
Applied Sciences Basel 2076-3417

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Multidisciplinary
Engineering, Multidisciplinary
Physics, Applied
Materials Science, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Sanabria, Pablo Hombre Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
2 Montoya, Sebastian - Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
3 Neyem, Andres Hombre Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
4 Icarte, Rodrigo Toro Hombre Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
5 Hirsch, Matias Hombre ISISTAN UNCPBA CONICET - Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina
6 Mateos, Cristian Hombre ISISTAN UNCPBA CONICET - Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Consejo Nacional de Investigaciones Científicas y Técnicas
Agencia Nacional de Investigación y Desarrollo
National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL
Agenția Națională pentru Cercetare și Dezvoltare
National Center for Artificial Intelligence CENIA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
No Statement Available
This work was funded by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2020-21200979. We also gratefully acknowledge funding from the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Additionally, we thank the funding provided by CONICET grant number PIBAA-28720210101298CO and grant number PIP-11220210100138CO.

Muestra la fuente de financiamiento declarada en la publicación.