Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP14083206 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Due to the widespread use of mobile and IoT devices, coupled with their continually expanding processing capabilities, dew computing environments have become a significant focus for researchers. These environments enable resource-constrained devices to contribute computing power to a local network. One major challenge within these environments revolves around task scheduling, specifically determining the optimal distribution of jobs across the available devices in the network. This challenge becomes particularly pronounced in dynamic environments where network conditions constantly change. This work proposes integrating the "reliability" concept into cutting-edge human-design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic and ever-changing network conditions caused by nodes' mobility. Additionally, we introduce a reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network status into the RL agent. Our research rigorously contrasts our proposed algorithms' throughput and job completion rates with their predecessors. Simulated results reveal a marked improvement in overall throughput, with our algorithms potentially boosting the environment's performance. They also show a significant enhancement in job completion within dynamic environments compared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of human-designed heuristics. Our study emphasizes the advantages of embedding inherent network characteristics into job distribution algorithms for dew computing. Such incorporation gives them a profound understanding of the network's diverse resources. Consequently, this insight enables the algorithms to manage resources more adeptly and effectively.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Sanabria, Pablo | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile |
| 2 | Montoya, Sebastian | - |
Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile |
| 3 | Neyem, Andres | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile |
| 4 | Icarte, Rodrigo Toro | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile |
| 5 | Hirsch, Matias | Hombre |
ISISTAN UNCPBA CONICET - Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina |
| 6 | Mateos, Cristian | Hombre |
ISISTAN UNCPBA CONICET - Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina |
| Fuente |
|---|
| Consejo Nacional de Investigaciones Científicas y Técnicas |
| Agencia Nacional de Investigación y Desarrollo |
| National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL |
| Agenția Națională pentru Cercetare și Dezvoltare |
| National Center for Artificial Intelligence CENIA |
| Agradecimiento |
|---|
| No Statement Available |
| This work was funded by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2020-21200979. We also gratefully acknowledge funding from the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Additionally, we thank the funding provided by CONICET grant number PIBAA-28720210101298CO and grant number PIP-11220210100138CO. |