Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



DustNet: Attention to Dust
Indexado
WoS WOS:001212397400014
Scopus SCOPUS_ID:85189557532
DOI 10.1007/978-3-031-54605-1_14
Año 2024
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Detecting airborne dust in common RGB images is hard. Nevertheless, monitoring airborne dust can greatly contribute to climate protection, environmentally friendly construction, research, and numerous other domains. In order to develop an efficient and robust airborne dust monitoring algorithm, various challenges have to be overcome. Airborne dust may be opaque as well translucent, can vary heavily in density, and its boundaries are fuzzy. Also, dust may be hard to distinguish from other atmospheric phenomena such as fog or clouds. To cover the demand for a performant and reliable approach for monitoring airborne dust, we propose DustNet, a dust density estimation neural network. DustNet exploits attention and convolutional-based feature pyramid structures to combine features from multiple resolution and semantic levels. Furthermore, DustNet utilizes highly aggregated global information features as an adaptive kernel to enrich high-resolution features. In addition to the fusion of local and global features, we also present multiple approaches for the fusion of temporal features from consecutive images. In order to validate our approach, we compare results achieved by our DustNet with those results achieved by methods originating from the crowd-counting and the monocular depth estimation domains on an airborne dust density dataset. Our DustNet outperforms the other approaches and achieves a 2.5% higher accuracy in localizing dust and a 14.4% lower mean absolute error than the second-best approach.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Michel, Andreas - Fraunhofer Inst Optron Syst Technol & Image Explo - Alemania
Karlsruhe Inst Technol - Alemania
Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB - Alemania
Karlsruher Institut für Technologie - Alemania
2 Weinmann, Martin Hombre Karlsruhe Inst Technol - Alemania
Karlsruher Institut für Technologie - Alemania
3 Schenkel, Fabian - Fraunhofer Inst Optron Syst Technol & Image Explo - Alemania
Karlsruhe Inst Technol - Alemania
Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB - Alemania
Karlsruher Institut für Technologie - Alemania
4 Gomez, Tomas - Meteodata - Chile
5 FALVEY-SINCLAIR, MARK JOHN Hombre Meteodata - Chile
6 Schmitz, Rainer Hombre Meteodata - Chile
7 Middelmann, Wolfgang - Fraunhofer Inst Optron Syst Technol & Image Explo - Alemania
Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB - Alemania
8 Hinz, Stefan Hombre Karlsruhe Inst Technol - Alemania
Karlsruher Institut für Technologie - Alemania
9 Kothe, U -
10 Rother, C -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Minera Los Pelambres

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The images in the presented figures and those used for creating the Meteodata dust dataset are from the pit of Minera Los Pelambres, which collaborates with Meteodata in the advanced use of cameras for emission control strategies. The permission to use the images in this publication is kindly appreciated.

Muestra la fuente de financiamiento declarada en la publicación.