Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Harnessing AI for Education 4.0: Drivers of Personalized Learning
Indexado
WoS WOS:001216255200001
Scopus SCOPUS_ID:85192493352
DOI 10.34190/EJEL.22.5.3467
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Personalized learning, a pedagogical approach tailored to individual needs and capacities, has garnered considerable attention in the era of artificial intelligence (AI) and the fourth industrial revolution. This systematic literature review aims to identify key drivers of personalized learning and critically assess the role of AI in reinforcing these drivers. Following PRISMA guidelines, a thorough search was conducted across major peer-reviewed journal databases, resulting in the inclusion of 102 relevant studies published between 2013 and 2022. A combination of qualitative and quantitative analyses, employing categorization and frequency analysis techniques, was performed to discern patterns and insights from the literature. The findings of this review highlight several critical drivers that contribute to the effectiveness of personalized learning, both from a broad view of education and in the specific context of e-learning. Firstly, recognizing and accounting for individual student characteristics is foundational to tailoring educational experiences. Secondly, personalizing content delivery and instructional methods ensures that learning materials resonate with learners' preferences and aptitudes. Thirdly, customizing assessment and feedback mechanisms enables educators to provide timely and relevant guidance to learners. Additionally, tailoring user interfaces and learning environments fosters engagement and accessibility, catering to diverse learning styles and needs. Moreover, the integration of AI presents significant opportunities to enhance personalized learning. AI-driven solutions offer capabilities such as automated learner profiling, adaptive content recommendation, realtime assessment, and the development of intelligent user interfaces, thereby augmenting the personalization of learning experiences. However, the successful adoption of AI in personalized learning requires addressing various challenges, including the need to develop educators' competencies, refine theoretical frameworks, and navigate ethical considerations surrounding data privacy and bias. By providing a comprehensive understanding of the drivers and implications of AI-driven personalized learning, this review offers valuable insights for educators, researchers, and policymakers in the Education 4.0 era. Leveraging the transformative potential of AI while upholding robust pedagogical principles, personalized learning holds the promise of unlocking tailored educational experiences that maximize individual potential and relevance in the digital economy.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Education & Educational Research
Scopus
Computer Science Applications
Education
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Castro, Gina Paola Barrera - Univ Sabana - Colombia
Universidad de La Sabana - Colombia
2 Chiappe, Andres Hombre Univ Sabana - Colombia
Universidad de La Sabana - Colombia
3 Rodriguez, Diego Fernando Becerra - Univ Sabana - Colombia
Universidad de La Sabana - Colombia
4 SEPULVEDA-LOPEZ, FELIPE ANTONIO Hombre Universidad Católica de la Santísima Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de La Sabana
Universidad de La Sabana, Group Technologies for Academia - Proventus

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank the Universidad de La Sabana, Group Technologies for Academia - Proventus (Project EDUPHD-20-2022) for the support received in the preparation of this article.
We thank the Universidad de La Sabana, Group Technologies for Academia \u2013 Proventus (Project EDUPHD-20-2022) for the support received in the preparation of this article.

Muestra la fuente de financiamiento declarada en la publicación.