Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S44198-024-00192-2 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work, we advance in the study of the Lyapunov stability and instability of equilibrium solutions of Hamiltonian flows. More precisely, we study the nonlinear stability in the Lyapunov sense of equilibrium solutions in autonomous Hamiltonian systems with n-degrees of freedom, assuming the existence of two resonance vectors k 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{k}<^>1$$\end{document} and k 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{k}<^>2$$\end{document} without interaction ( | k 1 | <= | k 2 | \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\textbf{k}<^>1|\le |\textbf{k}<^>2|$$\end{document} ). We provide conditions to obtain a type of formal stability, called Lie stability. In particular, we need to normalize the Hamiltonian function to any arbitrary order, and our results take into account the sign of the components of the resonance vectors. Subsequently, we guarantee some sufficient conditions to obtain exponential stability in the sense of Nekhoroshev for Lie stable systems. In addition, we give sufficient conditions for the instability in the Lyapunov sense of the full system. For this, it is necessary to normalize the Hamiltonian function to an adequate order, and assuming that the components of at least one resonance vector change of sign.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Sierpe, Claudio | Hombre |
Universidad del Bío Bío - Chile
|
| 2 | VIDAL-DIAZ, CLAUDIO | Hombre |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad del Bío-Bío |
| Agradecimiento |
|---|
| We deeply appreciate suggestions and comments of the referee which contributed significantly to the improvement and clarity of this manuscript. Claudio Vidal was partially supported by project Fondecyt 1220628. This paper is part of the Claudio Sierpe Ph.D. thesis in the Program Doctorado en Matematica Aplicada, Universidad del Bio-Bio. |
| We deeply appreciate suggestions and comments of the referee which contributed significantly to the improvement and clarity of this manuscript. Claudio Vidal was partially supported by project Fondecyt 1220628. This paper is part of the Claudio Sierpe Ph.D. thesis in the Program Doctorado en Matem\u00E1tica Aplicada, Universidad del B\u00EDo-B\u00EDo. |