Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.UFUG.2024.128316 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Urban forests play a fundamental and irreplaceable role within cities through the ecosystem services they provide, such as carbon capture. However, inadequate management of urban trees can heighten the risks they pose to society. For instance, mechanical failures of tree components, such as branches, can cause harm to individuals and property. Regular assessments of tree conditions are necessary to mitigate these tree-related hazards, yet such evaluations are labor-intensive and currently lack automation. Previous studies have proposed utilizing street view images to alleviate tree inspection and shown the feasibility of visually inspecting trees. However, only a limited number of studies have addressed the automatic evaluation of urban trees, a challenge that can potentially be addressed using deep learning networks. Particularly in urban environments, there is a pressing need for increased automation in unresolved computer vision tasks. Therefore, this research presents a comprehensive analysis of neural networks and publicly available datasets that can aid arborists in automatically identifying urban trees. Specifically, we investigate the potential of deep learning networks in classifying tree genera and segmenting individual trees and their trunks. We emphasize the utilization of transfer learning strategies to enhance tree identification. The results demonstrate that neural networks can be considered practical tools for assisting arborists in tree recognition. Nevertheless, there are still gaps that remain and require attention in future research endeavors.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Arevalo-Ramirez, Tito | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Alfaro, Anali | - |
Universidad de Los Andes, Chile - Chile
|
| 3 | Figueroa, Jose | - |
Universidad de Los Andes, Chile - Chile
|
| 4 | Ponce-Donoso, Mauricio | Hombre |
Soc Chilena Arboricultura - Chile
The Sociedad Chilena de Arboricultura - Chile |
| 5 | Saavedra, Jose M. | - |
Universidad de Los Andes, Chile - Chile
|
| 6 | RECABARREN-BAHAMONDES, MATIAS | Hombre |
Universidad de Los Andes, Chile - Chile
|
| 7 | DELPIANO-COSTABAL, JOSE FRANCISCO | Hombre |
Universidad de Los Andes, Chile - Chile
|
| Fuente |
|---|
| Fondef |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Pontificia Universidad Católica de Chile |
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| AC3E |
| TREE Fund |
| Agencia Nacional de Investigacion y Desarrollo (ANID) |
| Agencia Nacional de Investigación y Desarrollo |
| Advanced Center of Electrical and Electronic Engineering, AC3E |
| Arbotag Chile |
| Agradecimiento |
|---|
| This work is supported by the Agencia Nacional de Investigacion y Desarrollo (ANID) under grant Fondecyt 11220510, FONDEF ID21I10360 and Tree Fund 21 -JD -01. JD thankfully acknowledges funding from the Advanced Center of Electrical and Electronic Engineering, AC3E (ANID/FB0008) and Arbotag Chile. TAR appreciates the support from the Pontificia Universidad Catolica de Chile by the PIA- 2023-VRA-PUC. |
| This work is supported by the Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID) under grant Fondecyt 11220510, FONDEF ID21I10360 and Tree Fund 21-JD-01. JD thankfully acknowledges funding from the Advanced Center of Electrical and Electronic Engineering, AC3E (ANID/FB0008) and Arbotag Chile. TAR appreciates the support from the Pontificia Universidad Cat\u00F3lica de Chile by the PIA-2023-VRA-PUC. |