Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NEUCOM.2018.04.035 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we propose a novel method for Support Vector Regression (SVR) based on second-order cones. The proposed approach defines a robust worst-case framework for the conditional densities of the input data. Linear and kernel-based second-order cone programming formulations for SVR are proposed, while the duality theory allows us to derive interesting geometrical properties for this strategy: the method maximizes the margin between two ellipsoids obtained by shifting the response variable up and down by a fixed parameter. Experiments for regression on twelve well-known datasets confirm the superior performance of our proposal compared to alternative methods such as standard SVR and linear regression. (C) 2018 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MALDONADO-ALARCON, SEBASTIAN ALEJANDRO | Hombre |
Universidad de Los Andes, Chile - Chile
|
| 2 | LOPEZ-LUIS, JULIO CESAR | Hombre |
Universidad Diego Portales - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Instituto de Salud Carlos III |
| Consejo Nacional de Innovacion, Ciencia y Tecnologia |
| Instituto de Sistemas Complejos de Ingeniería |
| Complex Engineering Systems Institute, ISCI |
| Agradecimiento |
|---|
| This research was partially funded by the Complex Engineering Systems Institute, ISCI (ICM-FIC: P05-004-F, CONICYT: FB0816), and by Fondecyt projects 1160738 and 1160894. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. |
| This research was partially funded by the Complex Engineering Systems Institute, ISCI (ICM-FIC: P05-004-F, CONICYT: FB0816), and by Fondecyt projects 1160738 and 1160894. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. |