Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Evaluation of Recommended Learning Paths Using Process Mining and Log Skeletons: Conceptualization and Insight into an Online Mathematics Course
Indexado
WoS WOS:001141545900032
Scopus SCOPUS_ID:85165909058
DOI 10.1109/TLT.2023.3298035
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Academic institutions dedicate a substantial effort to ensure the academic success of their students. At the course level, teachers recommend learning paths (RLPs) for students to guarantee the achievement of their learning outcomes. In terms of performance, these kinds of approaches are deemed more effective than others based uniquely on performing a collection of independent activities. However, there is neither systematic means to validate if following the learning path (LP) is effective, nor to assess whether and to what extent students adhere to these recommendations. This article introduces a novel technique for modeling recommended LPs, including not only an evaluation of path utility, but also a quantitative measure of student adherence thereto using process mining, and more precisely, log skeletons. Following an event abstraction process regarding real student-recorded activity, a scoping process is employed to retain the trajectories that adhere to the prescribed LP. The method based on process mining is translated into practice by considering an online university mathematics course. Results confirm the applicability of the method and, in this case, reveal that adhering to the suggested path correlates positively with final grades. Few students strictly follow the prescribed LP, although the vast majority support it. The method can be easily applied to overcome several challenges associated with enhancing academic performance from the learning analytics perspective.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Education & Educational Research
Computer Science, Interdisciplinary Applications
Scopus
Computer Science Applications
Education
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Martinez-Carrascal, Juan Antonio - Universitat Oberta de Catalunya - España
Univ Oberta Catalunya - España
2 Munoz-Gama, Jorge Hombre Pontificia Universidad Católica de Chile - Chile
3 Sancho-Vinuesa, Teresa Mujer Universitat Oberta de Catalunya - España
Univ Oberta Catalunya - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.