Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/SACVLC59022.2023.10347689 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we tackle the challenge of improving both user capacity and power allocation in wireless networks with sub-channel assignment constraints. We start by generating channel data using the Shannon capacity formula and use it to train a multiple linear regression model. This model incorporates randomly generated power, noise, and fading values as input features. We then create new test data to predict sub-channel capacities and employ these predictions to solve our optimization models. In our first model, we include the regression equations as constraints, treating power and capacity as variables while maintaining the accuracy of the model. In the second formulation, we use the predicted values as parameters to optimize the network. Preliminary numerical results show that the first model offers greater flexibility, providing optimal or near-optimal solutions with reduced computational time. We believe this approach holds promise for future wireless networks like 5G, 5G+, and 6G.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ADASME-SOTO, PABLO ALBERTO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | Viveros, Andres | Hombre |
Universidad de Santiago de Chile - Chile
|
| 3 | Ayub, Muhammad Shoaib | - |
Universidad de Santiago de Chile - Chile
|
| 4 | Soto, Ismael | Hombre |
Universidad de Santiago de Chile - Chile
|
| 5 | Firoozabadi, Ali Dehghan | - |
Universidad Tecnológica Metropolitana - Chile
|
| 6 | Rodriguez, Demostenes Zegarra | - |
Universidade Federal de Lavras - Brasil
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Tecnológica Metropolitana |
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| Projects Dicyt 062313AS and Dicyt |
| Agradecimiento |
|---|
| ACKNOWLEDGMENT The authors acknowledge the financial support from Projects Dicyt 062313AS and Dicyt 062117SG, FONDEF No.ID21 I 10191, STIC-AmSud AMSUD 220026, ANID/FONDECYT Iniciación No.11230129, and the Competition for Research Regular Projects, year 2021, code LPR21-02; Universidad Tecnológica Metropolitana. |