Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



The interpretation of diverging hydrogen and carbon dioxide permeations with temperature across silica-based membranes
Indexado
WoS WOS:001178007700001
Scopus SCOPUS_ID:85183501756
DOI 10.1016/J.MEMSCI.2024.122472
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Hydrogen (H2) permeance across silica-based membranes increases with temperature, but carbon dioxide (CO2) permeance decreases. Because of the opposite signs of activation energies for H2 and CO2 permeation, silica-based membranes are widely used in separating H2 and CO2 at high temperatures due to the elevated difference between H2 and CO2 permeabilities. However, there has not been an explanation of the diverging permeance between H2 and CO2 with temperature. This study developed a gas permeation model encompassing gas penetration through silica matrix, Knudsen diffusion, and viscous flow. An Oscillator model with an effective medium approach was used to screen all possible pore size distributions and calculate the gas penetration through the silica matrix. However, no pore size distribution could allow positive activation energy for hydrogen and negative activation energy for carbon dioxide at the same time. After including Knudsen diffusion and viscous flow, the diverging permeance between H2 and CO2 with temperature was successfully interpreted. The pore size distribution and the fractional contribution from Knudsen diffusion and viscous flow, which could best fit experimental activation energies for H2 and CO2 permeation, were identified. In the silica matrix that formed the membranes, 5-membered rings were the dominant structures in pores, which was responsible for the positive apparent activation energy for H2. The negative CO2 apparent activation energy indicated that it was inevitable to have some Knudsen diffusion and viscous flow through some imperfections of the membrane. Our model demonstrated the importance of high-temperature gas separation, as high temperature could minimize the undesirable gas flow through imperfections. This study also implied that further improvement of H2/CO2 separation by silica-based membranes could be achieved by reducing imperfections.

Revista



Revista ISSN
Journal Of Membrane Science 0376-7388

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Chemical
Polymer Science
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ji, Guozhao - Dalian University of Technology - China
Dalian Univ Technol - China
2 Kou, Xiaonan - Dalian University of Technology - China
Dalian Univ Technol - China
3 Anjum, Tanzila - Dalian University of Technology - China
Dalian Univ Technol - China
4 Khan, Asim Laeeq - COMSATS Institute of Information Technology Lahore - Pakistán
Comsats Univ Islamabad - Pakistán
5 Yin, Xian - Dalian University of Technology - China
Dalian Univ Technol - China
6 Elma, Muthia - Faculty of Engineering Lambung Mangkurat University - Indonesia
Lambung Mangkurat Univ - Indonesia
7 Olguin, Gianni Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China [Grant number: 22008020 ].
The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China [Grant number: 22008020] .

Muestra la fuente de financiamiento declarada en la publicación.