Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



On the max–min influence spread problem: A multi-objective optimization approach [Formula presented]
Indexado
WoS WOS:001185060200001
Scopus SCOPUS_ID:85183974310
DOI 10.1016/J.ASOC.2024.111343
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A central problem in network dynamics is understanding how influence spreads through a social network. This problem can be studied from an optimization approach. The aim is to find an initial seed of actors, with certain size restrictions, capable of maximizing or minimizing the activation of other actors in the network through a given influence spread model. The maximization and minimization versions of this problem have been extensively studied. In recent years, the min–max multi-objective version was defined, which involves finding the smallest seed capable of maximizing the influence spread in the network. Searching for exact solutions in these optimization problems is not feasible, even for relatively small networks. Hence, various approximation techniques have been proposed in recent years, with bio-inspired algorithms based on metaheuristics standing out among them. However, the max–min multi-objective version of the problem remains open. This article formally defines the max–min influence spread problem, aiming to find the maximum seed with the minimum spread capacity. We propose a strategy that uses solutions from the min–max version of the problem to reduce the search space, allowing us to avoid trivial solutions. The potential applications of this max–min version are diverse, e.g., finding clusters less susceptible to diseases in a contagion network or the most inefficient coalitions in a voting system. Using swarm intelligence metaheuristics methods as in the min–max version, the results obtained on real social networks show that this approach exhibits rapid convergence, reaching a seed encompassing 51.3% of the actors who could not influence others within the network. Similarly, for a more complex network, the approach is able to generate a seed where 71.8% of the actors showed no influence over others.

Revista



Revista ISSN
Applied Soft Computing 1568-4946

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Computer Science, Artificial Intelligence
Scopus
Software
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 RIQUELME-CSORI, FABIAN Hombre Universidad de Valparaíso - Chile
2 Munoz, Francisco Hombre Universidad de Valparaíso - Chile
3 OLIVARES-ORDENES, RODRIGO ANDRES Hombre Universidad de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondecyt de Iniciación
Agencia Nacional de Investigación y Desarrollo
Fondecyt de Iniciacion from ANID, Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
F. Riquelme has been supported by Fondecyt de Iniciación 11200113 from ANID, Chile. R. Olivares has been supported by Fondecyt de Iniciación 11231016 from ANID, Chile.
F. Riquelme has been supported by Fondecyt de Iniciacion 11200113 from ANID, Chile. R. Olivares has been supported by Fondecyt de Iniciacion 11231016 from ANID, Chile.

Muestra la fuente de financiamiento declarada en la publicación.