Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting passenger satisfaction in public transportation using machine learning models
Indexado
WoS WOS:001187829800001
Scopus SCOPUS_ID:85185202114
DOI 10.1016/J.TRA.2024.103995
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Enhancing the understanding of passenger satisfaction in public transportation is crucial for operators to refine transit services and to establish and elevate quality standards. While many researchers have tackled this issue using diverse tools and methods, the prevalent approach involves surveys with discrete choice models or structural equations. However, a common limitation of these models lies in their inherent assumptions and predefined relationships between dependent and independent variables. To address these limitations, we introduce a novel perspective by harnessing machine learning (ML) models to gauge and predict passenger satisfaction. ML models are advantageous when dealing with complex, non-linear relationships and massive datasets, and do not rely on predefined assumptions. Thus, in this paper, we evaluate four ML models for the prediction of ratings of the quality of transit service. These models were calibrated using data from the Transantiago bus system in Chile. Among the ML models, the Random Forest model emerges as the most effective, showcasing its ability to analyze and predict passengers’ satisfaction levels. We delve deeper into its capabilities by examining the impact of three pivotal variables on passengers’ score ratings: waiting time, bus occupation, and bus speed. The Random Forest model is able to capture threshold values for these variables that significantly influence or have no effect on passenger preferences.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Economics
Transportation
Transportation Science & Technology
Scopus
Civil And Structural Engineering
Business, Management And Accounting (Miscellaneous)
Management Science And Operations Research
Transportation
Aerospace Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ruiz, Elkin - Universidad Adolfo Ibáñez - Chile
2 Yushimito, Wilfredo F. Hombre Universidad Adolfo Ibáñez - Chile
3 Aburto, Luis Hombre Universidad Adolfo Ibáñez - Chile
Data Observatory Foundation - Chile
ANID Technol Ctr - Chile
4 De la Cruz, R. - Universidad Adolfo Ibáñez - Chile
Data Observatory Foundation - Chile
ANID Technol Ctr - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Anillo
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
National Fund for Scientific and Technological Research of Chile (FONDECYT)
Prix Inspiration Arctique
National Fund for Scientific and Technological Research of Chile
ANID/PIA/Anillo ACT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Luis Aburto acknowledges partial support from the National Fund for Scientific and Technological Research of Chile (FONDECYT) through grant No. 11220944 . Rolando de la Cruz acknowledges partial support from ANID/PIA/Anillo ACT 210096.
Luis Aburto acknowledges partial support from the National Fund for Scientific and Technological Research of Chile (FONDECYT) through grant No. 11220944. Rolando de la Cruz acknowledges partial support from ANID/PIA/Anillo ACT 210096.

Muestra la fuente de financiamiento declarada en la publicación.