Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/POLYM16040472 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body’s natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in acute bone injuries in the coming years. Our research developed a novel DLP resin for 3D printing, utilizing poly(ethylene glycol diacrylate) (PEGDA) and various monomers through the PET-RAFT polymerization method. To enhance the performance of bone scaffolds, triply periodic minimal surfaces (TPMS) were incorporated into the printed structure, promoting porosity and pore interconnectivity without reducing the mechanical resistance of the printed piece. The gyroid TPMS structure was the one that showed the highest mechanical resistance (0.94 ± 0.117 and 1.66 ± 0.240 MPa) for both variants of resin composition. Additionally, bioactive particles were introduced to enhance the material’s biocompatibility, showcasing the potential for incorporating active compounds for specific applications. The inclusion of bioceramic particles produces an increase of 13% in bioactivity signal for osteogenic differentiation (alkaline phosphatase essay) compared to that of control resins. Our findings highlight the substantial improvement in printing precision and resolution achieved by including the photoabsorber, Rose Bengal, in the synthesized resin. This enhancement allows for creating intricately detailed and accurately defined 3D-printed parts. Furthermore, the TPMS gyroid structure significantly enhances the material’s mechanical resistance, while including bioactive compounds significantly boosts the polymeric resin’s biocompatibility and bioactivity (osteogenic differentiation).
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | SARABIA-VALLEJOS, MAURICIO ALEJANDRO | Hombre |
Universidad San Sebastián - Chile
|
| 2 | De la Fuente, Scarleth Romero | - |
Universidad Tecnológica Metropolitana - Chile
|
| 3 | Tapia, Pamela | Mujer |
Universidad Tecnológica Metropolitana - Chile
|
| 4 | Inostroza, Nicolas Cohn | Hombre |
Universidad de Chile - Chile
|
| 5 | ESTRADA-HORMAZABAL, MANUEL IVAN | Hombre |
Universidad de Chile - Chile
|
| 6 | Ortiz-Puerta, David | Hombre |
Universidad San Sebastián - Chile
|
| 7 | Rodriguez-Hernandez, Juan | Hombre |
CSIC - Instituto de Ciencia y Tecnologia de Polimeros (ICTP) - España
CSIC - España |
| 8 | GONZALEZ-HENRIQUEZ, CARMEN MABEL | Mujer |
Universidad Tecnológica Metropolitana - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Consejo Superior de Investigaciones Científicas |
| Ministerio de Ciencia, Innovacion y Universidades |
| Universiti Teknikal Malaysia Melaka |
| FONDEF IDeA I+D |
| ANID-Millennium |
| MINEDUC-UTM |
| Agradecimiento |
|---|
| The authors acknowledge the financial support provided by FONDECYT (Grant Numbers: 1220251 and 11230427), FONDEF IDeA I+D (ID23I10110), and ANID-Millennium Science Initiative Program (ICN2021_004). J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Ciencia, Innovación y Universidades (Project: RTI2018-096328-B-I00). We thank the PIT FAB3D, PTI + Salud Global, and the PTI + SUSPLAST from CSIC for their support. We thanks the MINEDUC-UTM 1999 project that helped in acquiring the FE-SEM for the UTEM. |
| No Statement Available |