Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.EJOR.2023.08.027 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Complaint analysis is an essential business analytics application because complaints have a strong influence on customer satisfaction (CSAT). However, the process of categorising and prioritising complaints manually can be extremely time consuming for large companies. In this paper, we propose a framework for automatic complaint labelling and prioritisation using text analytics and operational research techniques. The labelling step of the training set is performed using a simple weighting approach from the multiple-criteria decision-making (MCDM) literature, while transformer-based deep learning (DL) techniques are used for text classification. We define two priority classes, namely, urgent complaints and other claims, and develop a system for automatic complaint categorisation. Our experimental results show that excellent predictive performance can be achieved with state-of-the-art text classification models. In particular, BETO, a bidirectional encoder representations from transformers (BERT) model trained on a large Spanish corpus, reaches an accuracy (ACCU) and area under the curve (AUC) of 92.1% and 0.9785, respectively. This positive result translates into a successful complaint prioritisation scheme, which improves CSAT and reduces the churn rate.(c) 2023 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vairetti, Carla | Mujer |
Universidad de Los Andes, Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| 2 | Aranguiz, Ignacio | - |
Universidad de Los Andes, Chile - Chile
|
| 3 | MALDONADO-ALARCON, SEBASTIAN ALEJANDRO | Hombre |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| 4 | Karmy, Juan Pablo | Hombre |
Universidad de Los Andes, Chile - Chile
|
| 5 | Leal, Alonso | - |
Universidad de Los Andes, Chile - Chile
|
| Fuente |
|---|
| FONDECYT-Chile |
| Agencia Nacional de Investigación y Desarrollo |
| ACHS |
| ANID PIA/PUENTE |
| Carolina Alcafuz |
| Agradecimiento |
|---|
| The authors gratefully acknowledge financial support from ANID PIA/PUENTE AFB220 0 03 and FONDECYT-Chile, grants 1200221 and 11200007. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions for improving the quality of the paper. Finally, the authors would like to thank Ronald Cohn from ACHS and Carolina Alcafuz and Victor Herrera from Crossnet for their support during the project. |
| The authors gratefully acknowledge financial support from ANID PIA/PUENTE AFB220003 and FONDECYT-Chile, grants 1200221 and 11200007. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions for improving the quality of the paper. Finally, the authors would like to thank Ronald Cohn from ACHS and Carolina Alcafuz and Víctor Herrera from Crossnet for their support during the project. |