Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1287/MOOR.2022.0230 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the competition complexity of dynamic pricing relative to the optimal auction in the fundamental single-item setting. In prophet inequality terminology, we compare the expected reward Am(F) achievable by the optimal online policy on m independent and identically distributed (i.i.d.) random variables distributed according to F to the expected maximum Mn(F)of n i.i.d. draws from F. We ask how big m has to be to ensure that (1 + epsilon)Am(F) >_ Mn(F) for all F. We resolve this question and characterize the competition complexity as a function of epsilon. When epsilon = 0, the competition complexity is unbounded. That is, for any n and m there is a distribution F such that Am(F) < Mn(F). In contrast, for any epsilon > 0, it is sufficient and necessary to have m = phi(epsilon)n, where phi(epsilon) = Theta(log log 1=epsilon). Therefore, the competition complexity not only drops from unbounded to linear, it is actually linear with a very small constant. The technical core of our analysis is a lossless reduction to an infinite dimensional and nonlinear optimization problem that we solve optimally. A corollary of this reduction is a novel proof of the factor approximate to 0:745 i.i.d. prophet inequality, which simultaneously establishes matching upper and lower bounds.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Brustle, Johannes | - |
London Sch Econ & Polit Sci - Reino Unido
London School of Economics and Political Science - Reino Unido |
| 2 | CORREA-FONTECILLA, JOSE RAFAEL | Hombre |
Universidad de Chile - Chile
|
| 3 | Dütting, Paul | Hombre |
Google Res - Suiza
Google LLC - Estados Unidos |
| 4 | Verdugo, Victor | Hombre |
Universidad de O`Higgins - Chile
Universidad de O’Higgins - Chile |
| Fuente |
|---|
| Center for Mathematical Modeling |
| Agencia Nacional de Investigación y Desarrollo |
| Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas |
| ANID (Anillo ICMD) |