Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A generalization of multi-source fusion-based framework to stock selection
Indexado
WoS WOS:001091534900001
Scopus SCOPUS_ID:85172661918
DOI 10.1016/J.INFFUS.2023.102018
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Selecting outstanding technology stocks for investment is challenging. Specifically, the research of the investment for academic purposes is not mature enough due to the disarray of the publications and the overwhelming informative experience from profit-making websites. Often, some authors entitle the stock price prediction as a stock selection problem; both prediction and selection are just sub-sections of portfolio management. Moreover, stock websites provide numerous potential criteria showing various evaluations to simulate and monitor the stock market professionally, which increases the difficulty of academic studies on stock selection.The paper generalizes a novel framework with a user-interactive interface for stock selection problems based on multi-source data fusion and decision-level fusion to enhance reliability limited by the narrow criteria performance and the strength of a model overcoming the weakness of a single-performed model. This framework benefits the time-series prediction and decision-making study. Besides, we propose adopting dynamic time warping to assist a task-learning process by customizing a loss function that improves the accuracy of data prediction. The experiment shows that the proposed method reduces the prediction log error by 6.3% on average and decreases the warping cost by 5.6% on average over all cases of real-situation data. Finally, we illustrate the proposed framework by implementing it in a real-world stock data selection. The results are practical and effective, further justified through a detailed ablation study. The source code will be available at https://github.com/lingping-fuzzy.

Revista



Revista ISSN
Information Fusion 1566-2535

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Theory & Methods
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Snasel, Vaclav - VSB Tech Univ Ostrava - República Checa
VSB – Technical University of Ostrava - República Checa
2 VELASQUEZ-SILVA, JUAN DOMINGO Hombre Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile
3 Pant, Millie - Indian Inst Technol - India
Indian Institute of Technology Roorkee - India
4 Georgiou, Dimitrios - Natl Tech Univ Athens - Grecia
National Technical University of Athens (NTUA) - Grecia
5 Kong, Lingping - VSB Tech Univ Ostrava - República Checa
VSB – Technical University of Ostrava - República Checa

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Department of Science and Technology, Ministry of Science and Technology, India
ANID Fondecyt
ANID FONDECYT, Chile
PIA/PUENTE, Chile
Czech Republic Ministry of Education, Youth and Sports in the project
Czech Republic Ministry of Education, Youth and Sports
INT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors gratefully acknowledge financial support ANID Fondecyt 1231122, PIA/PUENTE AFB220003, Chile, DST/INT/Czech/P-12/2019, reg.no. LTAIN19176 by the Czech Republic Ministry of Education, Youth and Sports in the project "Metaheuristics Framework for Multiobjective Combinatorial Optimization Problems (META MO-COP)".
The authors gratefully acknowledge financial support ANID Fondecyt 1231122, PIA/PUENTE AFB220003, Chile, DST/ INT/ Czech/ P-12/ 2019, reg.no. LTAIN19176 by the Czech Republic Ministry of Education, Youth and Sports in the project “Metaheuristics Framework for Multiobjective Combinatorial Optimization Problems (META MO-COP)”.

Muestra la fuente de financiamiento declarada en la publicación.