Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP132111841 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The design of biodegradable polymeric materials is of increasing scientific interest due to accelerating levels of plastics pollution. One area of increasing interest is the design of biodegradable polymer films based on seaweed as a raw material. The goal of the study is to explore whether machine learning techniques can be used to predict the properties of unknown compositions based on existing data from the literature. Clustering algorithms are used, which show how some ingredients components at certain concentration levels alter the mechanical properties of the films. Robust regression algorithms with three popular models, namely decision tree, random forest, and gradient boosting. Their predictive capabilities are compared, resulting in the random forest algorithm being the most stable with the greatest predictive capacity. These analyses offer a decision support system for biomaterials manufacturing and experimentation. The results and conclusions of the study indicate that bioplastics made from seaweed have promising potential as a sustainable alternative to traditional plastics, discovering interesting additives to improve the performance of biopolymers. In addition, the machine learning approaches used provide effective tools for analyzing and predicting the properties of these materials in structured but highly sparse data.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ibarra-Perez, Davor | Hombre |
Universidad de Santiago de Chile - Chile
|
| 2 | Faba, S. | Hombre |
Universidad de Santiago de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| 3 | Hernandez-Munoz, Valentina | Mujer |
Universidad de Santiago de Chile - Chile
|
| 4 | Smith, Charlene | - |
Royal Coll Art - Reino Unido
Royal College of Art - Reino Unido |
| 5 | GALOTTO-LOPEZ, MARIA JOSE | Mujer |
Universidad de Santiago de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| 6 | Garmulewicz, Alysia | Mujer |
Universidad de Santiago de Chile - Chile
|
| Fuente |
|---|
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile |
| Agencia Nacional de Investigación y Desarrollo |
| Desarrollo e Innovacion |
| Department of Management |
| Faculty of Management and Economics, University of Santiago |
| ANID 2020 |
| We thank the researchers, Felipe Herrera, Thulasi Bikku, Diego Pavez Olave, and Fernanda Veliz for their discussions during the development process of this study. |
| Agradecimiento |
|---|
| We thank the researchers, Felipe Herrera, Thulasi Bikku, Diego Pavez Olave, and Fernanda Veliz for their discussions during the development process of this study. |
| We would further like to acknowledge the support of ANID, FONDEF\u2014IX Concurso de Investigaci\u00F3n Tecnol\u00F3gica, FONDEF/ANID 2020, Folio IT20I0127, POSTDOC_DICYT, C\u00F3digo 032161G_AYUDANTE, Vicerrector\u00EDa de Investigaci\u00F3n, Desarrollo e Innovaci\u00F3n. The authors would like to acknowledge the support of the Department of Management and the Faculty of Management and Economics, University of Santiago of Chile. |