Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Who's the Best Detective? Large Language Models vs. Traditional Machine Learning in Detecting Incoherent Fourth Grade Math Answers
Indexado
WoS WOS:001099675800001
Scopus SCOPUS_ID:85176734358
DOI 10.1177/07356331231191174
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Written answers to open-ended questions can have a higher long-term effect on learning than multiple-choice questions. However, it is critical that teachers immediately review the answers, and ask to redo those that are incoherent. This can be a difficult task and can be time-consuming for teachers. A possible solution is to automate the detection of incoherent answers. One option is to automate the review with Large Language Models (LLM). They have a powerful discursive ability that can be used to explain decisions. In this paper, we analyze the responses of fourth graders in mathematics using three LLMs: GPT-3, BLOOM, and YOU. We used them with zero, one, two, three and four shots. We compared their performance with the results of various classifiers trained with Machine Learning (ML). We found that LLMs perform worse than MLs in detecting incoherent answers. The difficulty seems to reside in recursive questions that contain both questions and answers, and in responses from students with typical fourth-grader misspellings. Upon closer examination, we have found that the ChatGPT model faces the same challenges.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Education & Educational Research
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Urrutia, Felipe Hombre Universidad de Chile - Chile
2 ARAYA-SCHULZ, ROBERTO Hombre Universidad de Chile - Chile
Inst Educ - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID/PIA/Basal Funds for Centers of Excellence
Agencia Nacional de Investigación y Desarrollo
Support from ANID/PIA/Basal Funds for Centers of Excellence FB0003 is gratefully acknowledged.

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Support from ANID/PIA/Basal Funds for Centers of Excellence FB0003 is gratefully acknowledged.
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Chilean National Agency for Research and Development (ANID), grant number ANID/PIA/Basal Funds for Centers of Excellence FB0003.

Muestra la fuente de financiamiento declarada en la publicación.