Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Δ-PINNs: Physics-informed neural networks on complex geometries
Indexado
WoS WOS:001102526300001
Scopus SCOPUS_ID:85175039285
DOI 10.1016/J.ENGAPPAI.2023.107324
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Physics-informed neural networks (PINNs) have demonstrated promise in solving forward and inverse problems involving partial differential equations. Despite recent progress on expanding the class of problems that can be tackled by PINNs, most of existing use-cases involve simple geometric domains. To date, there is no clear way to inform PINNs about the topology of the domain where the problem is being solved. In this work, we propose a novel positional encoding mechanism for PINNs based on the eigenfunctions of the Laplace-Beltrami operator. This technique allows to create an input space for the neural network that represents the geometry of a given object. We approximate the eigenfunctions as well as the operators involved in the partial differential equations with finite elements. We extensively test and compare the proposed methodology against different types of PINNs in complex shapes, such as a coil, a heat sink and the Stanford bunny, with different physics, such as the Eikonal equation and heat transfer. We also study the sensitivity of our method to the number of eigenfunctions used, as well as the discretization used for the eigenfunctions and the underlying operators. Our results show excellent agreement with the ground truth data in cases where traditional PINNs fail to produce a meaningful solution. We envision this new technique will expand the effectiveness of PINNs to more realistic applications. Code available at: https://github.com/fsahli/Delta-PINNs.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Computer Science, Artificial Intelligence
Automation & Control Systems
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
Control And Systems Engineering
Artificial Intelligence
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Sahli-Costabal, Francisco Hombre Pontificia Universidad Católica de Chile - Chile
Millennium Inst Intelligent Healthcare Engn - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
2 Pezzuto, Simone Mujer Univ Trento - Italia
Univ Svizzera Italiana - Suiza
Università di Trento - Italia
UNIVERSITA DELLA SVIZZERA ITALIANA - Suiza
3 Perdikaris, Paris Hombre UNIV PENN - Estados Unidos
School of Engineering and Applied Science - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Air Force Office of Scientific Research
U.S. Department of Energy
US Air Force Office of Scientific Research
FONDECYT-Iniciacion
Swiss Heart Foundation
Agencia Nacional de Investigación y Desarrollo
ANID - Millennium Science Initiative Program
US Department of Energy under the Advanced Scientific Computing Research program
Theo Rossi di Montelera Foundation
Metis Foundation Sergio Mantegazza
Horten Foundation
Fidinam Foundation
Schweizerische Herzstiftung
CSCS-Swiss National Supercomputing Centre
Center for CCMC

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was funded by ANID - Millennium Science Initiative Program - ICN2021_004 and NCN19_161 to FSC. FSC also acknowledges the support of the project FONDECYT-Iniciacion 11220816. This work was financially supported by the Theo Rossi di Montelera Foundation, the Metis Foundation Sergio Mantegazza, the Fidinam Foundation, and the Horten Foundation to the Center for CCMC. SP also acknowledges the CSCS-Swiss National Supercomputing Centre (No. s1074) , and the Swiss Heart Foundation (No. FF20042) . PP acknowledges support from the US Department of Energy under the Advanced Scientific Computing Research program (grant DE-SC0019116) , the US Air Force Office of Scientific Research (grant AFOSR FA9550-20-1-0060).
This work was funded by ANID – Millennium Science Initiative Program – ICN2021_004 and NCN19_161 to FSC. FSC also acknowledges the support of the project FONDECYT-Iniciación 11220816. This work was financially supported by the Theo Rossi di Montelera Foundation , the Metis Foundation Sergio Mantegazza , the Fidinam Foundation , and the Horten Foundation to the Center for CCMC . SP also acknowledges the CSCS-Swiss National Supercomputing Centre (No. s1074 ), and the Swiss Heart Foundation (No. FF20042 ). PP acknowledges support from the US Department of Energy under the Advanced Scientific Computing Research program (grant DE-SC0019116 ), the US Air Force Office of Scientific Research (grant AFOSR FA9550-20-1-0060 )

Muestra la fuente de financiamiento declarada en la publicación.