Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/TIE.2023.3279565 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Model-predictive control is a constrained optimization control method with superior performance than linear methods for multivariable and multiobjective control of power converters. Nonetheless, its performance is limited by model uncertainties and measurement noise. This study tackles this challenge by proposing a new hybrid parallel-cascade extended state observer (PC-ESO) with two key advantages: 1) higher disturbance rejection than the conventional linear ESO and cascade ESO (CESO) at low bandwidth and 2) better noise suppression than the conventional ESO. PC-ESO's time-domain structure and comprehensive frequency-domain analysis are presented. Furthermore, PC-ESO is applied to improve the transient disturbance rejection of CESO through a novel structurally adaptive ESO (SAESO) algorithm. The proposed SAESO provides both high-frequency noise suppression and better disturbance rejection than CESO and cascade-parallel ESO. Finally, the proposed methods are experimentally validated by the model-free predictive control of a grid-connected power converter.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Babayomi, Oluleke | - |
Shandong Univ - China
Shandong University - China |
| 2 | Zhang, Zhenbin | Hombre |
Shandong Univ - China
Shandong University - China |
| 3 | Li, Zhen | - |
Shandong Univ - China
Shandong University - China |
| 4 | Heldwein, Marcelo Lobo | Hombre |
TECH UNIV MUNICH - Alemania
Technische Universität München - Alemania |
| 5 | RODRIGUEZ-PEREZ, JOSE RAMON | Hombre |
Universidad San Sebastián - Chile
|
| Fuente |
|---|
| National Distinguished Expert (Youth Talent) Program of China |
| General Program of the National Natural Science Foundation of China |
| Shenzhen Science and Technology Innovation Program |
| National R&D Program of China |
| Agradecimiento |
|---|
| This work was supported in part by the National R&D Program of China under Grant 2022YFB4201700, in part by the General Program of the National Natural Science Foundation of China under Grant 51977124, Grant 52277191, and Grant 52277192, in part by the National Distinguished Expert (Youth Talent) Program of China under Grant 31390089963058, and in part by the Shenzhen Science and Technology Innovation Program under Grant JCYJ20210324132616040 and Grant JCYJ20220530141010024. |