Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



On spectral invariants of the α-mixed adjacency matrix
Indexado
WoS WOS:001111537400001
Scopus SCOPUS_ID:85176095052
DOI 10.1016/J.DAM.2023.11.010
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Let G be a mixed graph and alpha is an element of[0,1]. Let D(G) and A(G) be the diagonal matrix of vertex degrees and the mixed adjacency matrix of G, respectively. The alpha -mixed adjacency matrix of G is the matrix A(alpha)(G)=D-alpha(G)+(1-alpha)A(G).We study some properties of A(alpha)(G) associated with some type of mixed graphs, namely quasi-bipartite and pre-bipartite mixed graphs. A spectral characterization for pre-bipartite and some class of quasi-bipartite mixed graphs is given. For a mixed graph G we exploit the problem of finding the smallest alpha for which A(alpha)(G) is positive semi-definite. This problem was proposed by Nikiforov in the context of undirected graphs. It is proven here that, for a mixed graph this number is not greater than 12 and that a connected mixed graph G with n >= 2 is quasi-bipartite if and only if this number is exactly 12. The spread of the alpha -mixed adjacency matrix is the difference among the largest and the smallest alpha -mixed adjacency eigenvalue. Upper and lower bounds for the spread of the alpha - mixed adjacency matrix are obtained. The alpha -mixed Estrada index of G is the sum of the exponentials of the eigenvalues of A(alpha)(G). In this paper, bounds for the eigenvalues of A(alpha)(G) are established and, using these bounds some sharp bounds on the mixed Estrada index of A(alpha)(G) are presented.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics, Applied
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Andrade, Enide - Univ Aveiro - Portugal
Centro de Investigação e Desenvolvimento em Matemática e Aplicações - Portugal
2 Lenes, Eber - Univ Sinu - Colombia
Universidad del Sinú - Colombia
3 Pizarro, Pamela Mujer Universidad Católica del Norte - Chile
4 ROBBIANO-BUSTAMANTE, MARIA ROSARIO Mujer Universidad Católica del Norte - Chile
5 Rodriguez, Jonnathan - Universidad de Antofagasta - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
MINEDUC-UA
Fundação para a Ciência e a Tecnologia
Universidad de Antofagasta
Programa Regional Mathamsud
Center for Research and Development in Mathematics and Applications
Universidad del Sinú
Initiation Program in Research-Universidad de Antofagasta

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank the referees for the useful comments to the paper. Enide Andrade is supported by Portuguese funds through the CIDMA -Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundacao para a Ciencia e a Tecnologia), within projects UIDB/04106/2020 and UIDP/04106/2020. J. Rodriguez was supported by MINEDUC-UA<EM><STRONG> </STRONG></EM>project, code ANT-1899 and Funded by the Initiation Program in Research -Universidad de Antofagasta, INI-19-06 and Programa Regional MATHAMSUD MATH2020003. Eber Lenes was supported by Proyecto BASEX-PD/2023-03 -Universidad del Sinu.r project, code ANT-1899 and Funded by the Initiation Program in Research-Universidad de Antofagasta, INI-19-06 and Programa Regional MATHAMSUD MATH2020003. Eber Lenes was supported by Proyecto BASEX-PD/2023-03-Universidad del Sinu.
Enide Andrade is supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications , and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia) , within projects UIDB/04106/2020 and UIDP/04106/2020 . J. Rodríguez was supported by MINEDUC-UA project , code ANT-1899 and Funded by the Initiation Program in Research - Universidad de Antofagasta , INI-19-06 and Programa Regional MATHAMSUD MATH2020003 . Eber Lenes was supported by Proyecto BASEX-PD/2023-03 - Universidad del Sinú .

Muestra la fuente de financiamiento declarada en la publicación.