Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting Occupant Behavior in Office Buildings Based on Thermal Comfort Variables Using Machine Learning
Indexado
WoS WOS:001127705200007
DOI 10.5821/ACE.18.53.11958
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Office workers spend most of their time inside a building, and as a result, physical-environmental variables begin to play a crucial role in their productivity and performance. This study establishes a connection between machine learning models and the behavior of occupants and the self-assessed productivity they exhibit, through the use of various models. These models were implemented to identify and compare which of them better estimate this behavior, particularly the self-assessed productivity that individuals experience in their workplace. To accomplish this, physical-environmental variables, and the perceptions of occupants from various office buildings in the city of Concepcion were collected. This study successfully compares the performance of four machine learning models (decision tree, K-Nearest Neighbor, Bayesian model, and neural network). Their performance was measured using indicators known as Accuracy, Precision, and Recall. These models were applied to both an original database and a balanced database, followed by a comparison of the results obtained. It can be established that there is a relationship between physical-environmental variables and the self-assessed productivity of workers. Furthermore, it can be mentioned that the neural network is the model that best describes this relationship and, therefore, achieves the highest performance. This study provides an approach to understanding occupant behavior from a machine learning perspective.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Architecture
Urban Studies
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Aravena, Gaston Arias - Universidad del Bío Bío - Chile
2 Espinosa, Fredy Troncoso Hombre Universidad del Bío Bío - Chile
3 Soto-Munoz, Jaime - Universidad del Bío Bío - Chile
4 Kelly, Maureen Trebilcock - Universidad del Bío Bío - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.