Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.GEOMPHYS.2023.105058 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present the concept of finite-dimensional complex homogeneous contact Lie super -algebra. The Z2-graded homogeneous cases are studied in detail producing some rele-vant examples. We characterize homogeneous contact Lie superalgebras in terms of their Berezinian and their structure matrix. These Lie superalgebras are also characterized by means of deformation theory, and as an application we obtain the complete classification of low dimensional Lie superalgebras of this type.(c) 2023 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALVAREZ, MARIA ALEJANDRA | Mujer |
Universidad de Antofagasta - Chile
|
| 2 | Rodriguez-Vallarte, Maria del Carmen | - |
UASLP - México
Universidad Autonoma de San Luis Potosi - México |
| 3 | Salgado, Gil | - |
UASLP - México
Universidad Autonoma de San Luis Potosi - México |
| Fuente |
|---|
| CONACYT |
| Consejo Nacional de Ciencia y Tecnología |
| MINEDUC-UA |
| PROMEP |
| PROMEP grant |
| MINEDUC-UA project ANT |
| MCRV |
| Agradecimiento |
|---|
| MAA is supported by MINEDUC-UA project, code ANT 1999. MCRV and GS would like to acknowledge the support received by PROMEP grant UASLP-CA-228 and CONACyT Grant A1-S-45886. |
| MAA is supported by MINEDUC-UA project, code ANT 1999 . MCRV and GS would like to acknowledge the support received by PROMEP grant UASLP-CA-228 and CONACyT Grant A1-S-45886 . |